数学之家

标题: 闲来无事,出个题玩玩 [打印本页]

作者: 战巡    时间: 2009-4-3 18:51
标题: 闲来无事,出个题玩玩
设y=f(x,t),而t=t(x,y)是由F(x,y,t)=0所确定的函数,f,F都有一阶连续偏导数,证明

作者: 战巡    时间: 2009-4-5 00:25
...........
没人回??是不是嫌那个式子太复杂了??
弄个简单点的吧
其实就是证明

作者: 战巡    时间: 2009-4-5 00:28
原帖由 战巡 于 2009-4-5 00:25 发表
...........
没人回??是不是嫌那个式子太复杂了??
弄个简单点的吧
其实就是证明
http://www.imathas.com/cgi-bin/mimetex.cgi?\displaystyle \frac{dy}{dx}=\frac{f_xF_t-f_tF_x}{f_tF_y+F_t}


再没人做我发答案了...........
作者: xuan2009    时间: 2009-4-5 12:46
不会做啊。。天啊。
作者: 战巡    时间: 2009-4-5 18:57
原帖由 xuan2009 于 2009-4-5 12:46 发表
不会做啊。。天啊。

很正常啊........
这大一的题嘛.........
作者: 小思    时间: 2009-4-5 20:38
相对于题
我对那些字母更感兴趣
好可爱哦~
作者: 战巡    时间: 2009-4-6 00:17
还是没人做..........
算了,直接发答案了事












两式联立解得



相除得到


PS:楼上这个——

[ 本帖最后由 战巡 于 2009-4-6 00:19 编辑 ]
作者: castelu    时间: 2009-4-7 18:31
原来是利用全微分的办法,感谢分享
作者: xuan2009    时间: 2009-4-8 12:17
有点恐惧微积分




欢迎光临 数学之家 (http://www.2math.cn/) Powered by Discuz! X3.1