希腊字母 | 运算符号 | 分组括号 | 关系符号 | 特殊符号 | |||||
输入 | 显示 | 输入 | 显示 | 输入 | 显示 | 输入 | 显示 | 输入 | 显示 |
\alpha | $\alpha$ | + | $+$ | \left( {} \right. | $\left( {} \right.$ | = | $=$ | \forall | $\forall$ |
\beta | $\beta$ | - | $-$ | \left. {} \right) | $\left. {} \right)$ | \ne | $\ne$ | \infty | $\infty$ |
\gamma | $\gamma$ | \pm | $\pm$ | \left[ {} \right. | $\left[ {} \right.$ | \not\mid | $\not\mid$ | \emptyset | $\emptyset$ |
\delta | $\delta$ | \mp | $\mp$ | $\left. {} \right]$ | \equiv | $\equiv$ | \exists | $\exists$ | |
\epsilon | $\epsilon$ | \cdot | $\cdot$ | \left\{ {} \right. | $\left\{ {} \right.$ | \not\equiv | $\not\equiv$ | \nabla | $\nabla$ |
\zeta | $\zeta$ | * | $*$ | \left. {} \right\} | $\left. {} \right\}$ | < | $<$ | \bot | $\bot$ |
\eta | $\eta$ | \times | $\times$ | | | $|$ | > | $>$ | \angle | $\angle$ |
\theta | $\theta$ | / | $/$ | \left\langle {} \right. | $\left\langle {} \right.$ | \le | $\le$ | \cdot | $\cdot$ |
\iota | $\iota$ | \backslash | $\backslash$ | \left. {} \right\rangle | $\left. {} \right\rangle$ | \ge | $\ge$ | \circ | $\circ$ |
\kappa | $\kappa$ | a^x | $a^x$ | \ll | $\ll$ | \prec | $\prec$ | \partial | $\partial$ |
\lambda | $\lambda$ | \log_ax | $\log_ax$ | \gg | $\gg$ | \succ | $\succ$ | \aleph | $\aleph$ |
\mu | $\mu$ | C_n^m | $C_n^m$ | \left. {} \right\} | $\left. {} \right\}$ | \approx | $\approx$ | \cdots | $\cdots$ |
\nu | $\nu$ | \circ | $\circ$ | \left\{ {} \right. | $\left\{ {} \right.$ | \cong | $\cong$ | \vdots | $\vdots$ |
\xi | $\xi$ | \oplus | $\oplus$ | \propto | $\propto$ | \ddots | $\ddots$ | ||
\omicron | $\omicron$ | \otimes | $\otimes$ | \diamondsuit | $\diamondsuit$ | ||||
\pi | $\pi$ | \odot | $\odot$ | ||||||
\rho | $\rho$ | \wedge | $\wedge$ | ||||||
\sigma | $\sigma$ | \vee | $\vee$ | ||||||
\tau | $\tau$ | \cap | $\cap$ | ||||||
\upsilon | $\upsilon$ | \cup | $\cup$ | ||||||
\phi | $\phi$ | ||||||||
\chi | $\chi$ | ||||||||
\psi | $\psi$ | ||||||||
\omega | $\omega$ | ||||||||
逻辑符号 | 函数名称 | 箭头符号 | 强调符号 | 字体命令 | |||||
输入 | 显示 | 输入 | 显示 | 输入 | 显示 | 输入 | 显示 | 输入 | 显示 |
\neg | $\neg$ | \frac{b}{a} | $\frac{b}{a}$ | \uparrow | $\uparrow$ | \widehat x | $\widehat x$ | \tt A | $\tt A$ |
\in | $\in$ | \sqrt x | $\sqrt x$ | \downarrow | $\downarrow$ | \overline x | $\overline x$ | \sf A | $\sf A$ |
\notin | $\notin$ | \sqrt[n]{x} | $\sqrt[n]{x}$ | \rightarrow | $\rightarrow$ | \underline x | $\underline x$ | ||
\subset | $\subset$ | \sum\limits_{i=1}^na_i | $\sum\limits_{i=1}^na_i$ | \leftarrow | $\leftarrow$ | \vec x | $\vec x$ | ||
\supset | $\supset$ | \prod\limits_{i=1}^na_i | $\prod\limits_{i=1}^na_i$ | \leftrightarrow | $\leftrightarrow$ | dot x | $\dot x$ | ||
\subseteq | $\subseteq$ | \lim\limits_{x \rightarrow x_0}f(x) | $\lim\limits_{x \rightarrow x_0}f(x)$ | \Rightarrow | $\Rightarrow$ | ddot x | $\ddot x$ | ||
\supseteq | $\supseteq$ | \int_a^b f(x)dx | $\int_a^b f(x)dx$ | \Leftarrow | $\Leftarrow$ | ||||
$\left( {\begin{array}{*{20}{c}} a_{11}&a_{12}\\ a_{21}&a_{22} \end{array}} \right)$ | \Leftrightarrow | $\Leftrightarrow$ |
代数[Algebra] | ||
输入 | 显示 | 备注 |
x_{1,2}=\frac{-b \pm \sqrt{b^2-4ac}}{2a} | $x_{1,2}=\frac{-b \pm \sqrt{b^2-4ac}}{2a}$ | 一元二次方程求根公式 |
|a|-|b| \le |a+b| \le |a|+|b| | $|a|-|b| \le |a+b| \le |a|+|b|$ | 绝对值不等式 |
a_n=a_1+(n-1)d | $a_n=a_1+(n-1)d$ | 等差数列通项公式 |
\log_ab=\frac{\log_cb}{\log_ca} | $\log_ab=\frac{\log_cb}{\log_ca}$ | 对数换底公式 |
A_n^m=C_n^mA_m^m | $A_n^m=C_n^mA_m^m$ | 排列组合恒等式 |
分析[Analysis] | ||
输入 | 显示 | 备注 |
\lim\limits_{x \rightarrow x_0}f(x)=f(x_0) | $\lim\limits_{x \rightarrow x_0}f(x)=f(x_0)$ | 函数连续的定义 |
\frac{d}{dx}f(x)=\lim\limits_{\Delta x \rightarrow 0}\frac{f(x+\Delta x)-f(x)}{\Delta x} | $\frac{d}{dx}f(x)=\lim\limits_{\Delta x \rightarrow 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}$ | 函数导数的定义 |
\int_a^bf(x)dx=F(b)-F(a) | $\int_a^bf(x)dx=F(b)-F(a)$ | Newton-Leibniz公式 |
f(x)=\sum\limits_{n=0}^\infty\frac{f^{(n)}(a)}{n!}(x-a)^n | $f(x)=\sum\limits_{n=0}^\infty\frac{f^{(n)}(a)}{n!}(x-a)^n$ | 函数的幂级数展开 |
\iint(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}d\sigma)=\oint_LPdx+Qdy | $\iint(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}d\sigma)=\oint_LPdx+Qdy$ | Green公式 |
几何[Geometry] | ||
输入 | 显示 | 备注 |
\vec c=\lambda \vec a+\mu \vec b | $\vec c=\lambda \vec a+\mu \vec b$ | 向量共面的充要条件 |
\frac{x-x_0}{X}=\frac{y-y_0}{Y}=\frac{z-z_0}{Z} | $\frac{x-x_0}{X}=\frac{y-y_0}{Y}=\frac{z-z_0}{Z}$ | 直线方程 |
\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1 | $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$ | 平面方程 |
\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1 | $\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1$ | 椭球面 |
$\left( {\begin{array}{*{20}{c}} x''\\ y'' \end{array}} \right)=\left( {\begin{array}{*{20}{c}} \cos \theta&-\sin \theta\\ \sin \theta&\cos \theta \end{array}} \right) \cdot \left( {\begin{array}{*{20}{c}} x'\\ y' \end{array}} \right)+\left( {\begin{array}{*{20}{c}} a\\ b \end{array}} \right)$ | 正交变换 | |
矩阵[Matrices] | ||
输入 | 显示 | 备注 |
$\left| {\begin{array}{*{20}{c}} a_{11}&a_{12}\\ a_{21}&a_{22} \end{array}} \right|$ | 2阶行列式 | |
$\left| {\begin{array}{*{20}{c}} a_{11}&\cdots&a_{1n}\\ \vdots&\ddots&\vdots\\ a_{n1}&\cdots&a_{nn} \end{array}} \right|$ | n阶行列式 | |
$\left( {\begin{array}{*{20}{c}} a_{11}&a_{12}\\ a_{21}&a_{22} \end{array}} \right)$ | 2阶矩阵 | |
$\left( {\begin{array}{*{20}{c}} a_{11}&\cdots&a_{1n}\\ \vdots&\ddots&\vdots\\ a_{n1}&\cdots&a_{nn} \end{array}} \right)$ | n阶矩阵 | |
$\left( {\begin{array}{*{20}{c}} J_{m_1}(\lambda_1)&&&\\ &J_{m_2}(\lambda_2)&&\\ &&J_{m_3}(\lambda_3)&\\ &&&J_{m_4}(\lambda_4) \end{array}} \right)$ | Jordan矩阵 | |
三角[Tric] | ||
输入 | 显示 | 备注 |
\sin^2 \theta+\cos^2 \theta=1 | $\sin^2 \theta+\cos^2 \theta=1$ | 三角恒等式 |
\sin(\frac{\pi}{2}+\alpha)=\cos \alpha | $\sin(\frac{\pi}{2}+\alpha)=\cos \alpha$ | 诱导公式 |
\sin(x \pm y)=\sin x \cos y \pm \cos x \sin y | $\sin(x \pm y)=\sin x \cos y \pm \cos x \sin y$ | 两角和与差的正弦 |
\sin \alpha=\frac{2\tan \frac{\alpha}{2}}{1+\tan^2 \frac{\alpha}{2}} | $\sin \alpha=\frac{2\tan \frac{\alpha}{2}}{1+\tan^2 \frac{\alpha}{2}}$ | 万能公式 |
e^{i \theta}=\cos \theta+i\sin \theta | $e^{i \theta}=\cos \theta+i\sin \theta$ | Eular公式 |
统计[Statistics] | ||
输入 | 显示 | 备注 |
\frac{1}{n}\sum\limits_{i=1}^NX_i | $\frac{1}{n}\sum\limits_{i=1}^NX_i$ | 均值 |
\frac{1}{n}\sum\limits_{i=1}^N(X_i-{\overline X})^2 | $\frac{1}{n}\sum\limits_{i=1}^N(X_i-\overline X)^2$ | 方差 |
{\rm cov}(X,Y)=E\left\{(X-E(X))(Y-E(Y)) \right\} | ${\rm cov}(X,Y)=E\left\{(X-E(X))(Y-E(Y)) \right\}$ | 协方差 |
\rho_{XY}=\frac{cov(X,Y)}{\sqrt{D(x) \cdot D(Y)}} | $\rho_{XY}=\frac{cov(X,Y)}{\sqrt{D(x) \cdot D(Y)}}$ | 相关系数 |
\overline \beta=\frac{\sum\limits_{i=1}^N[(X_i-\overline X)(Y_i-\overline Y)]}{\sum\limits_{i=1}^N(X_i-\overline X)^2} | $\overline \beta=\frac{\sum\limits_{i=1}^N[(X_i-\overline X)(Y_i-\overline Y)]}{\sum\limits_{i=1}^N(X_i-\overline X)^2}$ | 参数估计 |
欢迎光临 数学之家 (http://www.2math.cn/) | Powered by Discuz! X3.1 |