数学之家
标题: 几个小问题 [打印本页]
作者: zhangyuong 时间: 2012-6-27 10:20
标题: 几个小问题
$x_{1,2}=\frac{-b+-\sqrt{b^2-4ac}}{2a}$
作者: zhangyuong 时间: 2012-6-27 11:17
Let A,B, and C denote complex constants, and z a complex variable. Show that
$A+ \bar A + B \bar z + bar \B z + (C+ \bar C )z\bar z =0$
is the equation of an arbitrary circle.
作者: zhangyuong 时间: 2012-6-27 11:25
We consider the polynomial
$P(z)=a_0 z^n + a_1 z^{n-1} + a_2 z^{n-2} + \cdots + a_n$
and assume that
$a_0 \ne 0, a_n \ne 0$.
Show that
(a) the equation
$|a_0| x^n + |a_1| x^{n-1} + \cdots + |a_{n-1}| x - |a_n|=0$
has just one positive root $r$, and
(b)$P(z)$ does not vanish in the circle $|z|<r$.
作者: zhangyuong 时间: 2012-6-27 11:29
Show that $z_1$, $z_2$, $z_3$ form an equilateral triangle if, and only if,
$z_1 ^2 + z_2 ^2 + z_3 ^2 = z_2 z_3 + z_3 z_1 + z_1 z_2$
作者: zhangyuong 时间: 2012-6-27 11:32
Show that
$|ac - \bar b d|^2 + |\bar a d + bc|^2 = (|a|^2 + |b|^2)(|c|^2 + |d|^2)$
where $a$, $b$, $c$, $d$ are all complex numbers.
作者: zhangyuong 时间: 2012-6-27 11:38
1986年全国高中数学联赛二试题1为:
试题A 已知实数列$a_0$, $a_1$, $a_2$, $\cdots$ 满足
$a_{i-1} + a_{i+1} = 2a_i$ $(i=1,2,3,\cdots)$.
求证:对于任何自然数$n$
$P(x)=a_0 C_n^0 (1-x)^n + a_1 C_n^1 x(1-x)^{n-1} + a_2 C_n^2 x^2 (1-x)^{n-2} + \cdots + a_{n-1} C_n^{n-1} x^{n-1}(1-x) + a_n C_n^n x^n$
是$x$的一次多项式或常数
欢迎光临 数学之家 (http://www.2math.cn/) |
Powered by Discuz! X3.1 |