数学之家

标题: 几道有意思的题(持续更新ing) [打印本页]

作者: 风之天炼    时间: 2014-4-16 23:27
标题: 几道有意思的题(持续更新ing)
本帖最后由 风之天炼 于 2014-4-19 00:40 编辑

1.证明 $\underbrace {11 \cdot  \cdot  \cdot 1}_{n - 1}\underbrace {22 \cdot  \cdot  \cdot 2}_n5$是完全平方数
2.在1到100这100个数中,认找10个数,使其倒数之和等于1.并可证明不可能找到偶数个奇数,使其倒数之和等于1.
3.已知a,b,c均为正数,且满足a^2+b^2=c^2,又n为不小于3的自然数,求证:a^n+b^n<c^n.
4.一个整系数四次多项式f(x),若有四个不同的正数a[sub]1[/sub],a[sub]2[/sub],a[sub]3[/sub],a[sub]4[/sub],使得f(a[sub]1[/sub])=f(a[sub]2[/sub])=f(a[sub]3[/sub])=f(a[sub]4[/sub])=1,求证:对任何整数β都不能使f(β)=-1.
作者: zyzme    时间: 2014-4-17 16:21
怎么只有一道题呢?
说好的几道呢?
作者: 风之天炼    时间: 2014-4-19 00:39
zyzme 发表于 2014-4-17 16:21
怎么只有一道题呢?
说好的几道呢?

更新啦~慢慢来嘛~
作者: zyzme    时间: 2014-4-25 22:30
本帖最后由 zyzme 于 2014-4-26 10:51 编辑

1、$\underbrace {11 \cdots 1}_{n - 1}\underbrace {22 \cdots 2}_n 5\\
=10^{2n-1}+10^{2n-2}+\cdots +10^{n+1}+2(10^{n}+10^{n-1}+\cdots +10)+5\\
=\frac{10^{n+1}(1-10^{n-1})}{1-10}+2 \frac{10(1-10^n)}{1-10}+5\\
=\frac{1}{9}[10^{2n}-10^{n+1} +2(10^{n+1}-10)]+5\\
=\frac{1}{9}[10^{2n}+10\cdot 10^{n} +25]\\
=(\frac{10^n+5}{3})^2$
因为 $10\equiv 1 \pmod{3}, 5\equiv 2 \pmod{3}$,所以,$3|(10^n+5)$.
所以结论成立。
2、1$
=\frac{1}{2}+\frac{1}{6}+\frac{1}{3}\\
=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{4}\\
=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{5}\\
=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{6}\\
=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{7}\\
=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{8}\\
=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{9}\\
=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{10}$
作者: zyzme    时间: 2014-4-26 15:18
本帖最后由 zyzme 于 2014-4-26 15:21 编辑

3、$
0<a,b<c,\frac{a}{c},0<\frac{b}{c}<1\\
f(n)=(\frac{a}{c})^n+(\frac{b}{c})^n<f(2)=1\\
a^n+b^n<c^n
$
作者: 风之天炼    时间: 2014-4-26 19:26
zyzme 发表于 2014-4-25 22:30
1、$\underbrace {11 \cdots 1}_{n - 1}\underbrace {22 \cdots 2}_n 5\\
=10^{2n-1}+10^{2n-2}+\cdots +1 ...

你的解答没有问题,其实这些题目我发出来是给大家思考体会思维方法的,主要是体会思维过程,以及对问题进一步的一些推广,去构造新的等式。
作者: zyzme    时间: 2014-4-26 22:23
风之天炼 发表于 2014-4-26 19:26
你的解答没有问题,其实这些题目我发出来是给大家思考体会思维方法的,主要是体会思维过程,以及对问题进 ...

我是不是该留着给别人做啊




欢迎光临 数学之家 (http://www.2math.cn/) Powered by Discuz! X3.1