数学之家

标题: 裴礼文 级数 536页 练习5.2.19 解答 [打印本页]

作者: castelu    时间: 2016-4-25 22:44
标题: 裴礼文 级数 536页 练习5.2.19 解答
练习5.2.19:
  证明:$\sum\limits_{n=1}^{\infty}(-1)^n\frac{x^2+n}{n^2}$在任何有穷区间上一致收敛,而在任何一点都不绝对收敛。



解:
(1)对任何有穷区间$I$,$\exists M_l>0$,使得对一切$x \in I$有$\frac{x^2}{n} \le M_l$。
$$\sum\limits_{n=1}^{\infty}(-1)^n\frac{1}{n}$$
  在$I$上一致收敛;
  对$\forall x \in I$
$$\frac{x^2+n}{n}=\frac{x^2}{n}+1$$
  单调减且
$$\frac{x^2}{n}+1 \le M_l^2+1$$
  即是一致有界的。
  由$Abel$判别法知在任何有穷区间$I$上,级数
$$\sum\limits_{n=1}^{\infty}(-1)^n\frac{x^2+n}{n^2}$$
  一致收敛。
(2)对$\forall x_0 \in R$
$$\sum\limits_{n=1}^{\infty}\left|(-1)^n\frac{x_0^2+n}{n^2}\right|=\sum\limits_{n=1}^{\infty}\frac{x_0^2}{n^2}+\sum\limits_{n=1}^{\infty}\frac{1}{n}$$
  由于
$$\sum\limits_{n=1}^{\infty}\frac{x_0^2}{n^2}$$
  收敛
$$\sum\limits_{n=1}^{\infty}\frac{1}{n}$$
  发散,故
$$\sum\limits_{n=1}^{\infty}(-1)^n\frac{x^2+n}{n^2}$$
  不绝对收敛。




欢迎光临 数学之家 (http://www.2math.cn/) Powered by Discuz! X3.1