数学之家

标题: 裴礼文 级数 581页 练习5.3.15 解答 [打印本页]

作者: castelu    时间: 2016-4-27 23:55
标题: 裴礼文 级数 581页 练习5.3.15 解答
练习5.3.15:
  设幂级数$\sum\limits_{n=1}^{\infty}a_nx^n$的收敛半径大于$0$,证明:
(1)$\lim\limits_{x \to 0}\sum\limits_{n=1}^{\infty}a_nx^n=0$;
(2)如果$a_1 \ne 0$,并且在原点的一个邻域里,$\left|\sum\limits_{n=1}^{\infty}a_nx^n\right| \ge |a_1||x|-2x^2$逐点成立,那么$|a_2| \le 2$。



解:
(1)设幂级数$\sum\limits_{n=1}^{\infty}a_nx^n$的收敛半径为$R$,由于$R>0$,所以幂级数在$(-R,R)$内闭一致收敛
$$\lim\limits_{x \to 0}\sum\limits_{n=1}^{\infty}a_nx^n=\sum\limits_{n=1}^{\infty}\lim\limits_{x \to 0}a_nx^n=0$$
(2)反证法,假设$|a_2|>2$,如果$a_2>2$
  若$a_1>0$,$\exists \delta>0$,$\forall x \in (-\delta,0)$,使得
$$\left|\sum\limits_{n=1}^{\infty}a_nx^n\right| < |a_1||x|-2x^2$$
  成立,矛盾。
  若$a_1<0$,$\exists \delta>0$,$\forall x \in (0,\delta)$,使得
$$\left|\sum\limits_{n=1}^{\infty}a_nx^n\right| < |a_1||x|-2x^2$$
  成立,矛盾。
  同理可证当$a_2<-2$时的情形。




欢迎光临 数学之家 (http://www.2math.cn/) Powered by Discuz! X3.1