数学之家

标题: 蓝以中上册 行列式 208页 习题二6 解答 [打印本页]

作者: castelu    时间: 2016-5-17 20:55
标题: 蓝以中上册 行列式 208页 习题二6 解答
习题二6:
  设$A$是$n$阶方阵,$n \ge 2$。证明:
$$r(A^*)=\left\{ \begin{array}{l}
n, 当r(A)=n\\
1, 当r(A)=n-1\\
0, 当r(A)<n-1
\end{array} \right.$$



解:
  当$r(A)=n$时,$|A| \ne 0$,故
$$|A^*|=|A|^{n-1} \ne 0$$
  所以
$$r(A^*)=n$$
  当$r(A)=n-1$时,$A$至少有一个$n-1$阶子式不为$0$,所以
$$r(A^*) \ge 1$$
  又由$|A|=0$,得
$$AA^*=|A|E=O$$
  及《蓝以中上册 向量空间与矩阵 117页 习题四7 解答》
$$r(A)+r(A^*) \le n$$
  从而
$$r(A^*) \le 1$$
  所以
$$r(A^*)=1$$
  当
$$r(A)<n-1$$
  时,$A$的一切$n-1$阶子式全为$0$,所以
$$A^*=O$$
  因而
$$r(A^*)=0$$




欢迎光临 数学之家 (http://www.2math.cn/) Powered by Discuz! X3.1