数学之家

标题: 蓝以中下册 一元多项式环 165页 习题一31 解答 [打印本页]

作者: castelu    时间: 2016-7-28 20:28
标题: 蓝以中下册 一元多项式环 165页 习题一31 解答
习题一31:
  证明:如果
$$f(x)|f(x^n)$$
  那么$f(x)$在复数域内的根只能是零或单位根。



解:
  由于
$$f(x)|f(x^n)$$
  所以存在多项式$q(x)$,使得
$$f(x^n)=f(x)q(x)$$
  设$\alpha$是$f(x)$的任意一个根,即
$$f(\alpha)=0$$
  从而也有
$$f(\alpha^n)=f(\alpha)q(\alpha)=0$$
  也就是说$\alpha^n$是$f(x)$的根。依次类推下去,可得
$$\alpha,\alpha^n,\alpha^{n^2},\cdots$$
  都是$f(x)$的根
  若$f(x)$是$m$次多项式,则上式中最多只可能有$m$个数不同,所以必存在正整数$s>t$,有
$$\alpha^{n^s}=\alpha^{n^t},\alpha^{n^s}(\alpha^{n^t-n^s-1})=0$$
  于是得
$$\alpha^{n^s}=0或\alpha^{n^t-n^s}=1$$
  即$\alpha$或者为$0$,或者为单位根。




欢迎光临 数学之家 (http://www.2math.cn/) Powered by Discuz! X3.1