数学之家

标题: 蓝以中下册 一元多项式环 175页 习题二7 解答 [打印本页]

作者: castelu    时间: 2016-7-30 20:33
标题: 蓝以中下册 一元多项式环 175页 习题二7 解答
习题二7:
  在$R[x]$内求下列多项式的素因式标准分解式:
(1)
$$x^{2n}-1$$
(2)
$$x^{2n+1}-1$$
(3)
$$x^{2n+1}+1$$
(4)
$$x^{2n}+1$$



解:
$$\begin{eqnarray*}
x^{2n}-1&=&\prod\limits_{k=0}^{2n-1}\left(x-e^{\frac{k\pi i}{n}}\right)\\
&=&(x-1)(x+1)\prod\limits_{k=1}^{n-1}\left(x-e^{\frac{k\pi i}{n}}\right)\left(x-e^{\frac{(2n-k)\pi i}{n}}\right)\\
&=&(x-1)(x+1)\prod\limits_{k=1}^{n-1}\left(x^2-2\cos{\frac{k\pi}{n}}x+1\right)
\end{eqnarray*}$$
$$\begin{eqnarray*}
x^{2n+1}-1&=&(x-1)\prod\limits_{k=1}^{2n}\left(x-e^{\frac{2k\pi i}{2n+1}}\right)\\
&=&(x-1)\prod\limits_{k=1}^{n}\left(x-e^{\frac{2k\pi i}{2n+1}}\right)\left(x-e^{\frac{(2n+1-2k)\pi i}{2n+1}}\right)\\
&=&(x-1)\prod\limits_{k=1}^{n}\left(x^2-2\cos{\frac{2k\pi}{2n+1}}x+1\right)
\end{eqnarray*}$$
$$\begin{eqnarray*}
x^{2n+1}+1&=&\prod\limits_{k=0}^{2n}\left(x-e^{\frac{(2k+1)\pi i}{2n+1}}\right)\\
&=&(x+1)\prod\limits_{k=0}^{n-1}\left(x-e^{\frac{(2k+1)\pi i}{2n+1}}\right)\left(x-e^{\frac{(2n-2k)\pi i}{2n+1}}\right)\\
&=&(x+1)\prod\limits_{k=0}^{n-1}\left(x^2-2\cos{\frac{(2k+1)\pi}{2n+1}}x+1\right)
\end{eqnarray*}$$
$$\begin{eqnarray*}
x^{2n}+1&=&\prod\limits_{k=0}^{2n-1}\left(x-e^{\frac{(2k+1)\pi i}{2n}}\right)\\
&=&\prod\limits_{k=0}^{n-1}\left(x-e^{\frac{(2k+1)\pi i}{2n}}\right)\left(x-e^{\frac{(2n-2k-1)\pi i}{2n}}\right)\\
&=&\prod\limits_{k=0}^{n-1}\left(x^2-2\cos{\frac{(2k+1)\pi}{2n}}x+1\right)
\end{eqnarray*}$$




欢迎光临 数学之家 (http://www.2math.cn/) Powered by Discuz! X3.1