数学之家

标题: 蓝以中下册 多元多项式环 227页 习题三6 解答 [打印本页]

作者: castelu    时间: 2016-8-7 23:33
标题: 蓝以中下册 多元多项式环 227页 习题三6 解答
习题三6:
  设$f,g,h$是数域$K$上三个一元多项式,证明
$$R(fg,h)=R(f,h) \cdot R(g,h)$$



解:
  设
$$\deg f=m,\deg g=n,\deg h=k$$
  又设$f$首项系数为$a_0$,$g$首项系数为$b_0$
  让$f$在$C$内$m$个根是
$$\alpha_1,\alpha_2,\cdots,\alpha_m$$
  $g$在$C$内$n$个根是
$$\beta_1,\beta_2,\cdots,\beta_n$$
  那么,我们有
$$\begin{eqnarray*}
R(fg,h)&=&(a_0b_0)^k\prod\limits_{i=1}^mh(\alpha_i)\prod\limits_{j=1}^nh(\beta_j)\\
&=&a_0^k\prod\limits_{i=1}^mh(\alpha_i) \cdot b_0^k\prod\limits_{j=1}^nh(\beta_j)\\
&=&R(f,h)R(g,h)
\end{eqnarray*}$$




欢迎光临 数学之家 (http://www.2math.cn/) Powered by Discuz! X3.1