数学之家
标题:
Vandermonde行列式
[打印本页]
作者:
castelu
时间:
2017-11-9 18:37
标题:
Vandermonde行列式
行列式
$$d= \left| {\begin{array}{*{20}{c}} 1&1&1&1&1\\ a_1&a_2&a_3&\cdots&a_n\\ a_1^2&a_2^2&a_3^2&\cdots&a_n^2\\ \vdots&\vdots&\vdots&&\vdots\\ a_1^{n-1}&a_2^{n-1}&a_3^{n-1}&\cdots&a_n^{n-1} \end{array}} \right| $$
称为$n$级的Vandermonde行列式,对任意的$n$($n \ge 2$),$n$级Vandermonde行列式等于$a_1$,$a_2$,$\cdots$,$a_n$这$n$个数的所有可能的差$a_i-a_j$($1 \le j < i \le n$)的乘积,结果可以简写为
$$d= \left| {\begin{array}{*{20}{c}} 1&1&1&1&1\\ a_1&a_2&a_3&\cdots&a_n\\ a_1^2&a_2^2&a_3^2&\cdots&a_n^2\\ \vdots&\vdots&\vdots&&\vdots\\ a_1^{n-1}&a_2^{n-1}&a_3^{n-1}&\cdots&a_n^{n-1} \end{array}} \right| =\prod\limits_{1 \le j < i \le n} (a_i-a_j)。$$
Vandermonde行列式为零的充分必要条件是$a_1$,$a_2$,$\cdots$,$a_n$这$n$个数当中至少有两个相等。
欢迎光临 数学之家 (http://www.2math.cn/)
Powered by Discuz! X3.1