数学之家

标题: 对数小结 [打印本页]

作者: 天马行空    时间: 2008-11-16 13:32
标题: 对数小结
对数的概念  英语名词:logarithms

  如果a^b=n,那么log(a)(n)=b。其中,a叫做“底数”,n叫做“真数”,b叫做“以a为底的n的对数”。

  log(a)(n)函数叫做对数函数。对数函数中n的定义域是n>0,零和负数没有对数;a的定义域是a>0且a≠1。
对数的历史  对数是中学初等数学中的重要内容,那么当初是谁首创“对数”这种高级运算的呢?在数学史上,一般认为对数的发明者是十六世纪末到十七世纪初的苏格兰数学家——纳皮尔(Napier,1550-1617年)男爵。在纳皮尔所处的年代,哥白尼的“太阳中心说”刚刚开始流行,这导致天文学成为当时的热门学科。可是由于当时常量数学的局限性,天文学家们不得不花费很大的精力去计算那些繁杂的“天文数字”,因此浪费了若干年甚至毕生的宝贵时间。纳皮尔也是当时的一位天文爱好者,为了简化计算,他多年潜心研究大数字的计算技术,终于独立发明了对数。当然,纳皮尔所发明的对数,在形式上与现代数学中的对数理论并不完全一样。在纳皮尔那个时代,“指数”这个概念还尚未形成,因此纳皮尔并不是像现行代数课本中那样,通过指数来引出对数,而是通过研究直线运动得出对数概念的。那么,当时纳皮尔所发明的对数运算,是怎么一回事呢?在那个时代,计算多位数之间的乘积,还是十分复杂的运算,因此纳皮尔首先发明了一种计算特殊多位数之间乘积的方法。让我们来看看下面这个例子:

  n 0、1、2、3、 4、 5、 6、 7 、 8 、 9 、 10 、 11 、 12 、 13 、 14 、……

  2^n 1、2、4、8、16、32、64、128、256、512、1024、2048、4096、8192、16384、……

  这两行数字之间的关系是极为明确的:第一行表示2的指数,第二行表示2的对应幂。如果我们要计算第二行中两个数的乘积,可以通过第一行对应数字的加和来实现。比如,计算64×256的值,就可以先查询第一行的对应数字:64对应6,256对应8;然后再把第一行中的对应数字加和起来:6+8=14;第一行中的14,对应第二行中的16384,所以有:64×256=16384。纳皮尔的这种计算方法,实际上已经完全是现代数学中“对数运算”的思想了。回忆一下,我们在中学学习“运用对数简化计算”的时候,采用的不正是这种思路吗:计算两个复杂数的乘积,先查《常用对数表》,找到这两个复杂数的常用对数,再把这两个常用对数值相加,再通过《常用对数的反对数表》查出加和值的反对数值,就是原先那两个复杂数的乘积了。这种“化乘除为加减”,从而达到简化计算的思路,不正是对数运算的明显特征吗?经过多年的探索,纳皮尔男爵于1614年出版了他的名著《奇妙的对数定律说明书》,向世人公布了他的这项发明,并且解释了这项发明的特点。所以,纳皮尔是当之无愧的“对数缔造者”,理应在数学史上享有这份殊荣。伟大的导师恩格斯在他的著作《自然辩证法》中,曾经把笛卡尔的坐标、纳皮尔的对数、牛顿和莱布尼兹的微积分共同称为十七世纪的三大数学发明。法国著名的数学家、天文学家拉普拉斯(PierreSimonLaplace,1749-1827)曾说对数可以缩短计算时间,“在实效上等于把天文学家的寿命延长了许多倍”。
对数的性质及推导  定义

  若a^n=b(a>0且a≠1)

  则n=log(a)(b)

  基本性质

  1、a^(log(a)(b))=b

  2、log(a)(MN)=log(a)(M)+log(a)(N);

  3、log(a)(M÷N)=log(a)(M)-log(a)(N);

  4、log(a)(M^n)=nlog(a)(M)

  5、log(a^n)M=1/nlog(a)(M)

  推导

  1、因为n=log(a)(b),代入则a^n=b,即a^(log(a)(b))=b。

  2、MN=M×N

  由基本性质1(换掉M和N)

  a^[log(a)(MN)] = a^[log(a)(M)]×a^[log(a)(N)]

  由指数的性质

  a^[log(a)(MN)] = a^{[log(a)(M)] + [log(a)(N)]}

  又因为指数函数是单调函数,所以

  log(a)(MN) = log(a)(M) + log(a)(N)

  3、与(2)类似处理

  MN=M÷N

  由基本性质1(换掉M和N)

  a^[log(a)(M÷N)] = a^[log(a)(M)]÷a^[log(a)(N)]

  由指数的性质

  a^[log(a)(M÷N)] = a^{[log(a)(M)] - [log(a)(N)]}

  又因为指数函数是单调函数,所以

  log(a)(M÷N) = log(a)(M) - log(a)(N)

  4、与(2)类似处理

  M^n=M^n

  由基本性质1(换掉M)

  a^[log(a)(M^n)] = {a^[log(a)(M)]}^n

  由指数的性质

  a^[log(a)(M^n)] = a^{[log(a)(M)]*n}

  又因为指数函数是单调函数,所以

  log(a)(M^n)=nlog(a)(M)

  基本性质4推广

  log(a^n)(b^m)=m/n*[log(a)(b)]

  推导如下:

  由换底公式(换底公式见下面)[lnx是log(e)(x),e称作自然对数的底]

  log(a^n)(b^m)=ln(b^m)÷ln(a^n)

  换底公式的推导:

  设e^x=b^m,e^y=a^n

  则log(a^n)(b^m)=log(e^y)(e^x)=x/y

  x=ln(b^m),y=ln(a^n)

  得:log(a^n)(b^m)=ln(b^m)÷ln(a^n)

  由基本性质4可得

  log(a^n)(b^m) = [m×ln(b)]÷[n×ln(a)] = (m÷n)×{[ln(b)]÷[ln(a)]}

  再由换底公式

  log(a^n)(b^m)=m÷n×[log(a)(b)] --------------------------------------------(性质及推导 完)
函数图象  1.对数函数的图象都过(1,0)点.

  2.对于y=log(a)(n)函数,

  ①,当0<a<1时,图象上函数显示为(0,+∞)单减.随着a 的增大,图象逐渐以(1,0)点为轴顺时针转动,但不超过X=1.

  ②当a>1时,图象上显示函数为(0,+∞)单增,随着a的增大,图象逐渐以(1.0)点为轴逆时针转动,但不超过X=1.

  3.与其他函数与反函数之间图象关系相同,对数函数和指数函数的图象关于直线y=x对称.
其他性质  性质一:换底公式

  log(a)(N)=log(b)(N)÷log(b)(a)

  推导如下:

  N = a^[log(a)(N)]

  a = b^[log(b)(a)]

  综合两式可得

  N = {b^[log(b)(a)]}^[log(a)(N)] = b^{[log(a)(N)]*[log(b)(a)]}

  又因为N=b^[log(b)(N)]

  所以 b^[log(b)(N)] = b^{[log(a)(N)]*[log(b)(a)]}

  所以 log(b)(N) = [log(a)(N)]*[log(b)(a)] {这步不明白或有疑问看上面的}

  所以log(a)(N)=log(b)(N) / log(b)(a)

  公式二:log(a)(b)=1/log(b)(a)

  证明如下:

  由换底公式 log(a)(b)=log(b)(b)/log(b)(a) ----取以b为底的对数

  log(b)(b)=1 =1/log(b)(a) 还可变形得: log(a)(b)×log(b)(a)=1

  在实用上,常采用以10为底的对数,并将对数记号简写为lgb,称为常用对数,它适用于求十进伯制整数或小数的对数。例如lg10=1,lg100=lg102=2,lg4000=lg(103×4)=3+lg4,可见只要对某一范围的数编制出对数表,便可利用来计算其他十进制数的对数的近似值。在数学理论上一般都用以无理数e=2.7182818……为底的对数,并将记号 loge。简写为ln,称为自然对数,因为自然对数函数的导数表达式特别简洁,所以显出了它比其他对数在理论上的优越性。历史上,数学工作者们编制了多种不同精确度的常用对数表和自然对数表。但随着电子技术的发展,这些数表已逐渐被现代的电子计算工具所取代。
作者: 5601706    时间: 2009-6-19 20:40
强大  呵呵!!!!
作者: 元蛟    时间: 2009-7-13 14:52
这里不是教室耶
作者: xz5024    时间: 2009-7-28 11:44
囧    这样的东西还是不用发了吧
作者: 里亦维奇    时间: 2009-7-28 23:26
很好,发这样的东西对知识点的掌握是很有用的,任何一种考试中,都是对知识点的掌握情况,所谓“万变不离其宗”,就是源于基础知识点而高于基础知识点,LZ,我赞你




欢迎光临 数学之家 (http://www.2math.cn/) Powered by Discuz! X3.1