就是 ………………………………这个地方证√2不是有限小数不会证了
高手看看怎么做吧
我也想看看标准解法作者: 670330219 时间: 2008-12-15 17:41
不会……作者: kuing 时间: 2008-12-16 01:37
可以证明任意非平方整数的平方根为无理数。作者: wlx 时间: 2008-12-16 19:08
Hey, I tell you.
Proof by contradiction
Firstly, you know an irrational number cannot be written in the fraction form, so
Assume √2 =p/q , where p and q don’t have a common factor.
Square both side, you got:
2= p^2/q^2
Rearrange, 2q^2=p^2
This means p^2 is an even number, you know if p^2 is an even number , then p must be an even number as well, so rewrite p as 2n.
Therefore 2q^2=4n^2
Simplify this you get q^2=2n^2
This means q^2 is an even number, if q^2 is an even number , then q must be an even number as well, so q can be written as 2m.
Thus √2 =2n/2m , where top and bottom share a common factor of 2, aha! This is contradictory to our original assumption.
Proof by contradiction, you see…作者: 泡面 时间: 2008-12-19 12:58
不懂这些数学名词
不过还是谢谢LS了作者: xyj0415 时间: 2008-12-23 19:37
反证法
假设√2是有理数,设√2=p/q,p,q为整数,且p,q互质。
两边平方,移项,得2*q^2=p^2
所以p为偶数,p^2能整除4.
设p=2k(k为整数),原式转为 q^2=2*k^2
同理,q也为偶数,与p,q互质矛盾
所以,√2为无理数作者: castelu 时间: 2009-1-9 14:38
6楼的解法比较容易理解