一般解法: 令$x=\tan t$, $$\int \ln (x^2+1){\rm d}x$$ $$=\int \ln (\sec^2 t){\rm d} \tan t$$ $$=\tan t \ln \sec^2 t-2 \int \tan^2 t{\rm d}t$$ $$=\tan t \ln \sec^2 t-2 \int (sec^2-1){\rm d}t$$ $$=\tan t \ln \sec^2 t-2 \tan t+2t+C$$ 将$t=\arctan x$代回,得到: $$\tan t \ln \sec^2 t-2\tan t+2t+C$$ $$=x\ln (x^2+1)-2x+2\tan x+C$$ |
Powered by Discuz! X3.1
© 2001-2013 Comsenz Inc.