将函数$f\left( x \right) = \left| x \right|$($-\pi \le x \le \pi$)展开成Fourier级数 $$f(x)=\frac{\pi}{2}-\frac{4}{\pi }\sum\limits_{n=1}^\infty \frac{1}{(2n-1)^2} \cos (2n-1)x$$ 取$x=0$得: $$\sum\limits_{n=1}^\infty \frac{1}{(2n-1)^2}=\frac{\pi ^2}{8}$$ $$\sum\limits_{n=1}^\infty \frac{1}{n^2}=\sum\limits_{n=1}^\infty \frac{1}{(2n)^2}+\sum\limits_{n=1}^\infty \frac{1}{(2n-1)^2}=\frac{1}{4}\sum\limits_{n=1}^\infty \frac{1}{n^2}+\frac{\pi^2}{8}$$ $$\sum\limits_{n=1}^\infty \frac{1}{n^2}=\frac{\pi^2}{6}$$ |
Powered by Discuz! X3.1
© 2001-2013 Comsenz Inc.