多谢指点。觉得不太对劲但又没有办法解决、、、多谢高手 指点 |
你的题目右边是错的,详见过程: 三角函数存在下列性质: $\frac{{\cos \left( {a - b} \right)}}{{\cos a\cos b}} = \frac{{\cos a\cos b + \sin a\sin b}}{{\cos a\cos b}} = 1 + \tan a\tan b = \frac{{\tan a - \tan b}}{{\tan \left( {a - b} \right)}}$ 计算: $\frac{1}{{\cos {0^ \circ }\cos {1^ \circ }}} + \frac{1}{{\cos {1^ \circ }\cos {2^ \circ }}} + \cdots + \frac{1}{{\cos {{88}^ \circ }\cos {{89}^ \circ }}}\\ = \frac{1}{{\cos {1^ \circ }}}\left( {\frac{{\cos {1^ \circ }}}{{\cos {0^ \circ }\cos {1^ \circ }}} + \frac{{\cos {1^ \circ }}}{{\cos {1^ \circ }\cos {2^ \circ }}} + \cdots + \frac{{\cos {1^ \circ }}}{{\cos {{88}^ \circ }\cos {{89}^ \circ }}}} \right)\\ = \frac{1}{{\cos {1^ \circ }}}\left( {\frac{{\tan {1^ \circ } - \tan {0^ \circ }}}{{\tan {1^ \circ }}} + \frac{{\tan {2^ \circ } - \tan {1^ \circ }}}{{\tan {1^ \circ }}} + \cdots + \frac{{\tan {{89}^ \circ } - \tan {{88}^ \circ }}}{{\tan {1^ \circ }}}} \right)\\ = \frac{1}{{\cos {1^ \circ }}}\left( {\frac{{\tan {{89}^ \circ } - \tan {0^ \circ }}}{{\tan {1^ \circ }}}} \right) = \left( {\frac{1}{{\sin {1^ \circ }\tan {1^ \circ }}}} \right)$ |
Powered by Discuz! X3.1
© 2001-2013 Comsenz Inc.