数学之家

建站
数学爱好者的家园
 找回密码
 注册

QQ登录

只需一步,快速开始

证明题

查看数: 2389 | 评论数: 1 | 收藏 1
关灯 | 提示:支持键盘翻页<-左 右->
    组图打开中,请稍候......
发布时间: 2014-8-6 10:23

正文摘要:

这个怎么证明

回复

castelu 发表于 2014-8-6 21:37:54
$$\left\{ \begin{array}{l}
f\left( a+h \right) = f\left( a \right) + hf'\left( a \right) + \cdots + \frac{h^{n+1}}{\left( n+1 \right)!}f^{\left( n+1 \right)}\left( a \right) + \frac{h^{n+2}}{\left( n+2 \right)!}f^{\left( n+2 \right)}\left( a \right) + o\left( h^{n + 2} \right),\left( h \rightarrow 0 \right) \\
f\left( a+h \right) = f\left( a \right) + hf'\left( a \right) + \cdots + \frac{h^{n+1}}{\left( n+1 \right)!}f^{\left( n+1 \right)}\left( a + \theta h \right),\left( 0<\theta<1 \right) \\
\end{array} \right.$$
$$\frac{f^{\left( n+1 \right)}\left( a+\theta h \right) - f^{\left( n+1 \right)}\left( a \right)}{\theta h}\theta  = \frac{f^{\left( n+2 \right)}\left( a \right)}{n+2} + o\left( 1 \right)$$
$$f^{\left( n+2 \right)}\left( a \right)\lim\limits_{h \rightarrow 0} \theta  = f^{\left( n+2 \right)}\left( a \right)\lim\limits_{h \rightarrow 0} \frac{1}{n+2}$$
$$\lim\limits_{h \rightarrow 0} \theta  = \frac{1}{n+2}$$

QQ|网站统计|手机版|小黑屋|数学之家    

GMT+8, 2024-11-23 01:33 , Processed in 1.140625 second(s), 25 queries .

Powered by Discuz! X3.1

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表