设$a$,$b \in R$,且$a < b$。我们称数集$\left\{x| a < x < b \right\}$为开区间,记作$(a,b)$;数集$\left\{x|a \le x \le b \right\}$称为闭区间,记作$\left[ a,b \right]$;数集$\left\{x|a \le x < b \right\}$和$\left\{x| a < x \le b \right\}$都称为半开半闭区间,分别记作$\left[ a,b \right)$和$\left( a,b \right]$。以上这几类区间统称为有限区间。从数轴上来看,开区间$\left( a,b \right)$表示$a$、$b$两点间所有点的集合,闭区间$\left[ a,b \right]$比开区间$\left( a,b \right)$多两个端点,半开半闭区间$\left[ a,b \right)$比开区间$\left( a,b \right)$多一个端点$a$等。
满足关系式$x \ge a$的全体实数$x$的集合记作$\left (a,+\infty \right)$,这里符号$\infty$读作“无穷大”,$+\infty$读作“正无穷大”。类似地,我们记
$$\left( -\infty,a \right] = \left\{x|x \le a \right\},\left( a,+\infty \right)=\left\{x|x > a \right\},$$
$$\left( -\infty,a \right) = \left\{x|x < a \right\},\left( -\infty,+\infty \right)=\left\{x|-\infty < a < +\infty \right\}=R,$$
其中$-\infty$读作“负无穷大”。以上这几类数集都称为无限区间。有限区间和无限区间统称为区间。 |