讨论由参数方程
$$L:x=x(t),y=y(t),z=z(t),\alpha \le t \le \beta$$
表示的空间曲线$L$上某一点$P_0(x_0,y_0,z_0)$处的切线和法平面方程,这里$x_0=x(t_0)$,$y_0=y(t_0)$,$z_0=z(t_0)$,$\alpha \le t_0 \le \beta$,并假定上式中的三个函数在$t_0$处可导,且
$$[x'(t_0)]^2+[y'(t_0)]^2+[z'(t_0)]^2 \ne 0。$$
在曲线$L$上点$P_0$附近选取一点$P(x,y,z)=P(x_0+\Delta x,y_0+\Delta y,z_0+\Delta z)$,于是连接$L$上的点$P_0$与$P$的割线方程为
$$\frac{x-x_0}{\Delta x}=\frac{y-y_0}{\Delta y}=\frac{z-z_0}{\Delta z},$$
其中$\Delta x=x(t_0+\Delta t)-x(t_0)$,$\Delta y=y(t_0+\Delta t)-y(t_0)$,$\Delta z=z(t_0+\Delta t)-z(t_0)$。以$\Delta t$除上式各分母,得
$$\frac{x-x_0}{\frac{\Delta x}{\Delta t}}=\frac{y-y_0}{\frac{\Delta y}{\Delta t}}=\frac{z-z_0}{\frac{\Delta z}{\Delta t}}。$$
当$\Delta t \to 0$时,$P \to P_0$,且
$$\frac{\Delta x}{\Delta t} \to x'(t_0),\frac{\Delta y}{\Delta t} \to y'(t_0),\frac{\Delta z}{\Delta t} \to z'(t_0),$$
即得曲线$L$在$P_0$处的切线方程为
$$\frac{x-x_0}{x'(t_0)}=\frac{y-y_0}{y'(t_0)}=\frac{z-z_0}{z'(t_0)}。$$
由此可见,当$x'(t_0)$,$y'(t_0)$,$z'(t_0)$不全为零时,它们是该切线的方向数。
过点$P_0$可以作无穷多条直线与切线$l$垂直,所有这些直线都在同一平面上,称这平面为曲线$L$在点$P_0$处的法平面。它通过点$P_0$,且以$L$在$P_0$的切线$l$为它的法线,所以法平面$n$的方程为
$$x'(t_0)(x-x_0)+y'(t_0)(y-y_0)+z'(t_0)(z-z_0)=0。$$
当空间曲线$L$由方程组
$$L:\left\{ \begin{array}{l} F(x,y,z)=0\\ G(x,y,z)=0 \end{array} \right.$$
给出时,若它在点$P_0(x_0,y_0,z_0)$的某邻域内满足隐函数组定理的条件(这里不妨设$\frac{\partial (F,G)}{\partial (x,y)}|_{P_0} \ne 0$),则方程组在点$P_0$附近能确定惟一连续可微的隐函数组
$$x=\phi(z),y=\psi(z),$$
使得$x_0=\phi(z_0)$,$y_0=\psi(z_0))$,且
$$\frac{dx}{dz}=-\frac{\frac{\partial (F,G)}{\partial (z,y)}}{\frac{\partial (F,G)}{\partial (x,y)}},\frac{dy}{dz}=-\frac{\frac{\partial (F,G)}{\partial (x,z)}}{\frac{\partial (F,G)}{\partial (x,y)}}。$$
由于在点$P_0$附近方程组
$$L:\left\{ \begin{array}{l} F(x,y,z)=0\\ G(x,y,z)=0 \end{array} \right.$$
与函数组
$$x=\phi(z),y=\psi(z),$$
表示同一空间曲线,因此以$z$为参量时,就得到点$P_0$附近曲线$L$的参量方程:
$$x=\phi(z),y=\psi(z),z=z。$$
于是由
$$\frac{x-x_0}{x'(t_0)}=\frac{y-y_0}{y'(t_0)}=\frac{z-z_0}{z'(t_0)}$$
曲线在$P_0$处的切线方程为
$$\frac{x-x_0}{\frac{dx}{dz}|_{P_0}}=\frac{y-y_0}{\frac{dy}{dz}|_{P_0}}=\frac{z-z_0}{1},$$
即
$$\frac{x-x_0}{\frac{\partial (F,G)}{\partial (y,z)}|_{P_0}}=\frac{y-y_0}{\frac{\partial (F,G)}{\partial (z,x)}|_{P_0}}=\frac{z-z_0}{\frac{\partial (F,G)}{\partial (x,y)}|_{P_0}}。$$
按
$$x'(t_0)(x-x_0)+y'(t_0)(y-y_0)+z'(t_0)(z-z_0)=0$$
曲线在$P_0$处的法平面方程为
$$\frac{\partial (F,G)}{\partial (y,z)}|_{P_0}(x-x_0)+\frac{\partial (F,G)}{\partial (z,x)}|_{P_0}(y-y_0)+\frac{\partial (F,G)}{\partial (x,y)}|_{P_0}(z-z_0)=0。$$
同样可推出:当$\frac{\partial (F,G)}{\partial (z,y)}$或$\frac{\partial (F,G)}{\partial (z,x)}$在$P_0$处不等于零时,曲线在$P_0$处的切线与法平面方程仍分别取上两式的形式。由此可见,当
$$\frac{\partial (F,G)}{\partial (y,z)}|_{P_0},\frac{\partial (F,G)}{\partial (z,x)}|_{P_0},\frac{\partial (F,G)}{\partial (x,y)}|_{P_0}$$
不全为零时,它们是空间曲线
$$L:\left\{ \begin{array}{l} F(x,y,z)=0\\ G(x,y,z)=0 \end{array} \right.$$
在$P_0$处的切线的方向数。 |