数学之家

建站
数学爱好者的家园
 找回密码
 注册

QQ登录

只需一步,快速开始

数学之家» 数学之家 查看内容

文章内容

Hesse矩阵与极值

发布者: castelu | 发布时间: 2017-11-8 23:08| 查看数: 1981| 评论数: 0|帖子模式

  考虑定义在开集$D \subset R^n$上的向量函数
$$f: D \to R^n。$$
  如果向量函数$f$是一一映射。即不仅对每一个$x \in D$只有一个$y \in R^n$与之对应,且对每一个$y \in f(D)$也只有惟一确定的$x \in D$,使得$f(x)=y$。于是由后者能确定一个定义在$f(D)$上的函数,记为
$$f^{-1}:f(D) \to D,$$
  称它为函数$f$的反函数。函数$f$及其反函数$f^{-1}$显然满足
$$(f^{-1}f\circ f)(x)=x,x \in D,$$
$$(f \circ f^{-1})(y)=y,y \in f(D)。$$

定理(反函数定理) 设$D \subset R^n$是开集,函数$f: D \to R^n$满足以下条件:
(i)在$D$上可微,且$f'$连续;
(ii)存在$x_0 \in D$,使$\det f'(x_0) \ne 0$,

  则存在邻域$U=U(x_0) \subset D$使得
1、$f$在$U$上是一一映射,从而存在反函数$f^{-1}:V \to U$,其中$V=f(U)$是开集;
2、$f^{-1}$在$V$上存在连续导数$(f^{-1})'$,且
$$(f^{-1})'(y)=(f'(x))^{-1},x=f^{-1}(y),y \in V。$$

注意 存在的反函数(即使它可导)并不都能由它的自变量用显式来表示。

最新评论

QQ|网站统计|手机版|小黑屋|数学之家    

GMT+8, 2025-1-22 17:57 , Processed in 1.380912 second(s), 33 queries .

Powered by Discuz! X3.1

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表