|
练习7.3.22:
设$f(x)$,$g(x)$有连续的导函数,
(1)若$yf(xy)dx+xg(xy)dy$为恰当微分,试求$f-g$;
(2)若$f(x)$有原函数$\phi(x)$,试求
$$yf(xy)dx+xg(xy)dy$$
的原函数。
解:
(1)令$P(x,y)=yf(xy)$,$Q(x,y)=xg(xy)$
于是
$$\frac{\partial Q}{\partial x}=g(xy)+xyg'(xy), \frac{\partial P}{\partial y}=f(xy)+xyf'(xy)$$
由于$yf(xy)dx+xg(xy)dy$为恰当微分,故
$$\frac{\partial Q}{\partial x}=\frac{\partial P}{\partial y}$$
所以
$$f(xy)-g(xy)+xy(f'(xy)+g'(xy))=0$$
令
$$t=xy, h(t)=f(t)-g(t)$$
得到
$$h(t)+th'(t)=0$$
解得
$$h(t)=\frac{C}{t}$$
那么
$$f(xy)-g(xy)=\frac{C}{xy}(C是任意常数) $$
(2)设存在二元函数$u(x,y)$,满足
$$du=yf(xy)dx+xg(xy)dy$$
于是
$$\frac{\partial u}{\partial x}=y\phi'(xy)=\frac{\partial \phi(xy)}{\partial x}$$
那么
$$u(x,y)=\phi(xy)+\psi(y)$$
由(1)的讨论
$$\phi'(xy)-g(xy)=\frac{C}{xy}$$
可知
$$\phi'(xy)=g(xy)+\frac{C}{xy}$$
再由
$$\frac{\partial u}{\partial y}=x\phi'(xy)+\psi'(y)=xg(xy)+\frac{C}{y}+\psi'(y)$$
于是
$$\frac{C}{y}+\psi'(y)=0$$
解得
$$\psi(y)=-C\ln|y|+D$$
所以
$$u(x,y)=\phi(xy)-C\ln|y|+D(C,D是任意常数)$$
|
|