|
习题三5:
令
$$J=\left( {\begin{array}{*{20}{c}}
{0}&{1}&{}&{}\\
{}&{0}&{\ddots}&{}\\
{}&{}&{\ddots}&{1}\\
{}&{}&{}&{0}
\end{array}} \right)_{n \times n}$$
在数域$K$上线性空间$M_n(K)$内定义线性变换
$$AX=JX(X \in M_n(K))$$
试求$A$的最小多项式。
解:
在$M_n(K)$内取基
$$\left\{E_{ij}|i,j=1,2,\cdots,n\right\}$$
$JX$是把$X$每行向上平移一行,故有
$$A(E_{ni})=E_{n-1,i},A(E_{n-1,i})=E_{n-2,i},\cdots,A(E_{2i})=E_{1i},A(E_{1i})=0(i=1,2,\cdots,n)$$
因此$A$是一幂零线性变换,有$n$个循环不变子空间
$$I(E_{ni})=L(E_{1i},E_{2i},\cdots,E_{ni})(i=1,2,\cdots,n)$$
$A$在基
$$E_{11},E_{21},\cdots,E_{n1},E_{12},E_{22},\cdots,E_{n2},\cdots,E_{1n},E_{2n},\cdots,E_{nn}$$
下的矩阵成若尔当形
$$J=\left( {\begin{array}{*{20}{c}}
{J_1}&{}&{}&{}\\
{}&{J_2}&{}&{}\\
{}&{}&{\ddots}&{}\\
{}&{}&{}&{J_n}
\end{array}} \right),J_i=\left( {\begin{array}{*{20}{c}}
{0}&{1}&{}&{}&{}\\
{}&{0}&{1}&{}&{}\\
{}&{}&{0}&{\ddots}&{}\\
{}&{}&{}&{\ddots}&{1}\\
{}&{}&{}&{}&{0}
\end{array}} \right)_{n \times n}$$
$A$的最小多项式是
$$\phi(\lambda)=\lambda^n$$ |
|