|
设$a \in R$,$\delta > 0$。满足绝对值不等式$\left| x - a \right| < \delta$的全体实数$x$的集合称为点$a$的$\delta$邻域,记作$U\left( a;\delta \right)$,或简单地写作$U\left( a \right)$,即有
$$U\left( a;\delta \right) = \left\{x| \left| x - a \right| < \delta \right\} = \left( a - \delta, a + \delta \right)$$
点$a$的空心$\delta$邻域:${U^ \circ }\left( a;\delta \right) = \left\{x| 0 < \left| x - a \right| < \delta \right\}$
点$a$的$\delta$左邻域:${U_ - }\left( a;\delta \right) = \left( a - \delta,a \right]$
点$a$的$\delta$右邻域:${U_ + }\left( a;\delta \right) = \left[ a,a + \delta \right)$
$\infty$邻域:$U\left( \infty \right) = \left\{x| \left| x \right| > M \right\}$,其中$M$为充分大的正数。
$+\infty$邻域:$U\left( +\infty \right) = \left\{x| x > M \right\}$,其中$M$为充分大的正数。
$-\infty$邻域:$U\left( -\infty \right) = \left\{x| x < -M \right\}$,其中$M$为充分大的正数。 |
|