|
然后证明原题(1)第2个等式显然,证明第1个等式:
设A对的垂足是D,同理E,F
B,C,F,E四点共圆,因此EF=acosA,同理DE=ccosC,DF=bcosB
这样三角形DEF周长l=acosA+bcosB+ccosC=Σa*(b^2+c^2-a^2)/2bc=Σ(a^2b^2+a^2c^2-a^4)/2abc
=[2(a^2b^2+b^2c^2+c^2a^2)-(a^4+b^4+c^4)]/2abc=16S^2/2abc(引理1)
=8(abc/4R)^2/abc=abc/2R^2=2S/R=4RsinAsinBsinC
第2问:ΔAEF∽ΔABC,因此SΔAEF=SΔABC*cos^2A
同理其他,因此SΔDEF=S(1-cos^2A-cos^2B-cos^2C)=2ScosAcosBcosC(引理2) |
|