|
这道题目不是很好做,现在只写出一部分,
设切线和圆的左右交点分别为$A(x_1,y_1)$,$B(x_2,y_2)$,
椭圆的左焦点为$F_1(-c,0)$,$\vec {F_1A}=(x_1+c,y_1)$,$\vec {BA}=(x_2-x_1,y_2-y_1)$,
根据垂直关系,$\vec {F_1A} \cdot \vec {BA}=0$,
于是,$x_1x_2-x_1^2+cx_2-cx_1+y_1y_2-y_1^2$,
上面交点坐标之间的关系利用点同时在切线和圆上,满足圆方程和联立方程,再配合韦达定理求解,
不过最后的式子很繁琐,你自己计算试试。 |
|