|
练习7.2.25:
计算积分
$$\iint\limits_{0 \le x \le y \le \pi}\ln |\sin(x-y)|dxdy$$
解法1:
一方面
$$\begin{eqnarray*}
\iint\limits_{0 \le x \le y \le \pi}\ln |\sin(x-y)|dxdy&=&\int_0^{\pi}dx\int_x^{\pi}\ln\sin(y-x)dy\\
&=&\int_0^{\pi}dx\int_0^{\pi-x}\ln\sin udu
\end{eqnarray*}$$
另一方面
$$\begin{eqnarray*}
\iint\limits_{0 \le x \le y \le \pi}\ln |\sin(x-y)|dxdy&=&\int_0^{\pi}dy\int_0^y\ln\sin(y-x)dx\\
&=&\int_0^{\pi}dx\int_0^x\ln\sin(x-y)dy\\
&=&\int_0^{\pi}dx\int_0^x\ln\sin udu\\
&=&\int_0^{\pi}dx\int_{\pi-x}^{\pi}\ln\sin tdt\\
&=&\int_0^{\pi}dx\int_{\pi-x}^{\pi}\ln\sin udu
\end{eqnarray*}$$
两式相加
$$\begin{eqnarray*}
\iint\limits_{0 \le x \le y \le \pi}\ln |\sin(x-y)|dxdy&=&\frac{1}{2}\int_0^{\pi}dx\int_0^{\pi}\ln\sin udu\\
&=&\pi\int_0^{\frac{\pi}{2}}\ln\sin udu
\end{eqnarray*}$$
考虑积分
$$\int_0^{\frac{\pi}{2}}\ln\sin udu$$
易知
$$\int_0^{\frac{\pi}{2}}\ln\sin udu=\int_0^{\frac{\pi}{2}}\ln\cos udu$$
两式相加
$$\begin{eqnarray*}
\int_0^{\frac{\pi}{2}}\ln\sin udu&=&\frac{1}{2}\int_0^{\frac{\pi}{2}}\ln\frac{1}{2}\sin 2udu\\
&=&\frac{1}{2}\left(\int_0^{\frac{\pi}{2}}\ln\sin udu-\frac{\pi}{2}\ln2\right)
\end{eqnarray*}$$
故
$$\int_0^{\frac{\pi}{2}}\ln\sin udu=-\frac{\pi}{2}\ln2$$
那么
$$\iint\limits_{0 \le x \le y \le \pi}\ln |\sin(x-y)|dxdy=-\frac{\pi^2}{2}\ln2$$
解法2:
由对称性
$$\begin{eqnarray*}
\iint\limits_{0 \le x \le y \le \pi}\ln |\sin(x-y)|dxdy&=&\frac{1}{2}\iint\limits_{[0,\pi] \times [0,\pi]}\ln |\sin(x-y)|dxdy\\
&=&\frac{1}{2}\int_0^{\pi}dx\int_0^{\pi}\ln |\sin(x-y)|dy\\
&=&\frac{1}{2}\int_0^{\pi}dx\int_{-x}^{\pi-x}\ln |\sin u|du\\
&=&\frac{1}{2}\int_0^{\pi}dx\int_0^{\pi}\ln |\sin u|du\\
&=&\frac{\pi}{2}\int_0^{\pi}\ln\sin udu\\
&=&\pi\int_0^{\frac{\pi}{2}}\ln\sin udu
\end{eqnarray*}$$
根据解法1的讨论
$$\iint\limits_{0 \le x \le y \le \pi}\ln |\sin(x-y)|dxdy=-\frac{\pi^2}{2}\ln2$$ |
|