|
Joseph的解答
<P>x^2+y^2+z^2=2008<BR>若有一个为奇数,则其余两个的平方和为4k+3型,这是不可能的,因此全部都是偶数。<BR>令x=2a,y=2b,z=2c,则<BR>a^2+b^2+c^2=502,<BR>不妨设a<=b<=c,则<BR>a<=sqrt(502/3),<BR>所以1<=a<=12。<BR>(1)a=1<BR>b^2+c^2=501=3*167,都是4k+3型素因数,无解。<BR>(2)a=2<BR>b^2+c^2=498=2*3*83,3是4k+3型素因数,并且次数是1,无解。<BR>(3)a=3<BR>b^2+c^2=493=17*29,17=4^2+1^2,29=5^2+2^2,(4+i)(5+2i)=18+13i,(4+i)(5-2i)=22-3i,有解b=3,c=22和b=13,c=18。<BR>(4)a=4<BR>b^2+c^2=486=2*243,243是4k+3型素因数,并且次数是1,无解。<BR>(5)a=5<BR>b^2+c^2=477=3^2*53,53=7^2+2^2,有解b=6,c=21。<BR>(6)a=6<BR>b^2+c^2=466=2*233,2=1^2+1^1,233=13^2+8^2,(1+i)(13+8i)=5+21i,有解b=5,c=21,但不满足a<=b<=c的条件。<BR>(7)a=7<BR>b^2+c^2=453=3*151,都是4k+3型素因数,并且次数是1,无解。<BR>(8)a=8<BR>b^2+c^2=438=2*219,216是4k+3型素因数,并且次数是1,无解。<BR>(9)a=9<BR>b^2+c^2=421=14^2+15^2,有解b=14,c=15。<BR>(10)a=10<BR>b^2+c^2=402=2*3*67,3和67都是4k+3型素因数,并且次数是1,无解。<BR>(11)a=11<BR>b^2+c^2=381=3*127,3和127都是4k+3型素因数,并且次数是1,无解。<BR>(12)a=12<BR>b^2+c^2=358=2*179,3和179都是4k+3型素因数,并且次数是1,无解。<BR>综合上述12种情况,得到满足x<=y<=z的全部正整数解为(6,6,44),(6,26,36),(10,12,42),(18,28,30)。</P> |
|