|
习题二22:
设$A$是一个$n$阶实对称矩阵。证明$A$半正定的充分必要条件是存在$n$阶实对称矩阵$B$,使$A=B^2$。
解:
必要性
$A$半正定,存在$n$阶正交矩阵$T$,使
$$T^{-1}AT=T'AT=\left( {\begin{array}{*{20}{c}}
{\lambda_1}&{}&{}&{}\\
{}&{\lambda_2}&{}&{}\\
{}&{}&{\ddots}&{}\\
{}&{}&{}&{\lambda_n}
\end{array}} \right)$$
其中
$$\lambda_i \ge 0,i=1,2,\cdots,n$$
令
$$B=T'\left( {\begin{array}{*{20}{c}}
{\sqrt\lambda_1}&{}&{}&{}\\
{}&{\sqrt\lambda_2}&{}&{}\\
{}&{}&{\ddots}&{}\\
{}&{}&{}&{\sqrt\lambda_n}
\end{array}} \right)T$$
显然$B$是$n$阶实对称矩阵
并且
$$A=B^2$$
充分性
由于
$$A=B^2$$
并且$B$是$n$阶实对称矩阵
则
$$A=B'B$$
为实对称矩阵
令$B=(a_{ij})$,我们有
$$\begin{eqnarray*}
X'(B'B)X&=&(BX)'(BX)\\
&=&\sum\limits_{i=1}^n(a_{i1}x_1+a_{i2}x_2+\cdots+a_{in}x_n)^2 \ge 0
\end{eqnarray*}$$
故$A$为半正定矩阵。 |
|