数学之家

建站
数学爱好者的家园
 找回密码
 注册

QQ登录

只需一步,快速开始

查看: 1609|回复: 3
打印 上一主题 下一主题

[已解决] 正余弦定理(2)

[复制链接]
跳转到指定楼层
楼主
发表于 2010-3-20 18:10:34 | 只看该作者 回帖奖励 |正序浏览 |阅读模式
在三角形ABC中,AB=4,AC=3,角平分线AD=2,求此三角形面积。
分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 分享分享 分享淘帖 顶 踩
回复

使用道具 举报

地板
发表于 2010-3-21 11:27:46 | 只看该作者
呃......
张角公式确实不在中学范围内.....
不过很容易证明的.....

张角公式:
任意△ABC中,D是BC上任意一点(不于B、C重合),则有sin∠BAD/AC+sin∠CAD/AB=sin∠BAC/AD
证明:
显然S△ABD+S△ACD=S△ABC,那么有
(1/2)AB*ADsin∠BAD+(1/2)AC*ADsin∠CAD=(1/2)AB*ACsin∠BAC
两边除掉1/2,再两边除以AB*AD*AC即得sin∠BAD/AC+sin∠CAD/AB=sin∠BAC/AD
回复 支持 反对

使用道具 举报

板凳
 楼主| 发表于 2010-3-21 11:10:58 | 只看该作者
张角公式还没学啊。晕。。
回复 支持 反对

使用道具 举报

沙发
发表于 2010-3-20 18:51:49 | 只看该作者
.....
这个用张角公式很容易弄...
由张角公式可得
sin∠BAD/AC+sin∠CAD/AB=sin∠BAC/AD
sin(A/2)/3+sin(A/2)/4=sin(A)/2
(7/12)sin(A/2)=sin(A)/2
cos(A/2)=7/12
sin(A/2)=Sqrt[1-cos(A/2)^2]=Sqrt[95]/12
sin(A)=2cos(A/2)sin(A/2)=7Sqrt[95]/72
S△ABC=(1/2)AB*AC*sin(A)=7Sqrt[95]/12
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

QQ|网站统计|手机版|小黑屋|数学之家    

GMT+8, 2024-11-24 14:36 , Processed in 1.140625 second(s), 20 queries .

Powered by Discuz! X3.1

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表