|
练习5.3.7:
设
$$\frac{v_n}{v_{n-1}}=a\sqrt{\frac{n-1}{n+1}}, n=2,3,\cdots, |a|<1$$
$$x_{n+1}=x_n+cv_n^2, n=1,2,\cdots,c>0$$
求$\lim\limits_{n \to +\infty}x_n$
解:
级数
$$\sum\limits_{n=1}^{\infty}(x_{n+1}-x_n)$$
与极限
$$\lim\limits_{n \to \infty}x_n$$
同敛态
且
$$\lim\limits_{n \to \infty}x_n=\sum\limits_{n=1}^{\infty}(x_{n+1}-x_n)+x_1$$
由递推表达式
$$v_n=v_{n-1}a\sqrt{\frac{n-1}{n+1}}=v_{n-2}a^2\sqrt{\frac{(n-1)(n-2)}{(n+1)n}}=\cdots=v_1a^{n-1}\sqrt{\frac{2(n-1)!}{(n+1)!}}$$
于是
$$x_{n+1}-x_n=cv_n^2=2cv_1^2\frac{a^{2n-2}}{n(n+1)}$$
所以
$$\begin{eqnarray*}
\sum\limits_{n=1}^{\infty}(x_{n+1}-x_n)&=&2cv_1^2\sum\limits_{n=1}^{\infty}\frac{a^{2n-2}}{n(n+1)}\\
&=&2cv_1^2\left(\sum\limits_{n=1}^{\infty}\frac{a^{2n-2}}{n}-\sum\limits_{n=1}^{\infty}\frac{a^{2n-2}}{n+1}\right)\\
&=&2cv_1^2\left(1+\sum\limits_{n=2}^{\infty}\frac{a^{2n-2}-a^{2n-4}}{n}\right)
\end{eqnarray*}$$
记
$$S_n(x)=\sum\limits_{n=2}^{\infty}\frac{a^{2n-2}-a^{2n-4}}{n}x^n$$
由$D'Alembert$判别法可知,幂级数$S_n(x)$的收敛半径为$1$
$$S_n'(x)=\sum\limits_{n=2}^{\infty}(a^{2n-2}-a^{2n-4})x^{n-1}=\frac{a^2-1}{1-a^2x}$$
于是
$$S_n(x)=\int_0^x \frac{a^2-1}{1-a^2t}dt=\left(\frac{1-a^2}{a^2}\right)\ln(1-a^2x)$$
所以
$$S_n(1)=\sum\limits_{n=2}^{\infty}\frac{a^{2n-2}-a^{2n-4}}{n}=\left(\frac{1-a^2}{a^2}\right)\ln(1-a^2)$$
也即
$$\sum\limits_{n=1}^{\infty}(x_{n+1}-x_n)=2cv_1^2\left(1+\left(\frac{1-a^2}{a^2}\right)\ln(1-a^2)\right)$$
得到
$$\lim\limits_{n \to \infty}x_n=2cv_1^2\left(1+\left(\frac{1-a^2}{a^2}\right)\ln(1-a^2)\right)+x_1$$ |
|