定义 设函数$f$在${U^\circ}_+ \left( x_0;\delta ' \right)$(或${U^\circ}_- \left( x_0;\delta ' \right)$内有定义,$A$为定数。若对任给的$\epsilon > 0$,存在正数$\delta(<\delta')$,使得当$x_0 < x < x_0 + \delta$(或$x_0 - \delta < x < x_0$)时有
$$\left| f(x) - A \right| < \epsilon,$$
则称数$A$为函数$f$当$x$趋于$x_0^+$(或$x_0^-$)时的右(左)极限,记作
$$\lim\limits_{x \rightarrow x_0^+}f\left( x \right) = A\left( \lim\limits_{x \rightarrow x_0^-}f\left( x \right) = A \right)$$
或
$$f\left( x \right) \to A (x \rightarrow x_0^+)\left( f\left( x \right) \rightarrow A (x \to x_0^-) \right)。$$
右极限与左极限统称为单侧极限。$f$在点$x_0$的右极限与左极限又分别记为
$$f\left( x_0+0 \right) = \lim\limits_{x \rightarrow x_0^+}f\left( x \right)与f\left( x_0-0 \right) = \lim\limits_{x \rightarrow x_0^-}f\left( x \right)。$$
定理 $\lim\limits_{x \to x_0}f\left( x \right) = A \Leftrightarrow \lim\limits_{x \rightarrow x_0^+}f\left( x \right)=\lim\limits_{x \to x_0^-}f\left( x \right)=A$。