数学之家

建站
数学爱好者的家园
 找回密码
 注册

QQ登录

只需一步,快速开始

查看: 1734|回复: 0
打印 上一主题 下一主题

[已解决] 蓝以中上册 线性空间与线性变换 299页 习题三22 解答

[复制链接]
跳转到指定楼层
楼主
发表于 2016-6-6 17:37:43 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
习题三22:
  设
$$B=\left( {\begin{array}{*{20}{c}}
{-1}&{-1}\\
{2}&{1}
\end{array}} \right)$$
  在$M_2(K)$中定义变换如下:
$$AX=B^{-1}XB(\forall X \in M_2(K))$$
  证明$A$是$M_2(K)$内一个线性变换,并找出$\lambda_0 \in K,X_0 \in M_2(K),X_0 \ne 0$,使$AX_0=\lambda_0X_0$。



解:
  对
$$\forall X,Y \in M_2(K)$$
  有
$$A(X+Y)=B^{-1}(X+Y)B=B^{-1}XB+B^{-1}YB=AX+AY$$
  对任意实数$k$,有
$$A(kX)=B^{-1}(kX)B=kB^{-1}XB=kAX$$
  故$A$是$M_2(K)$内一个线性变换。
  由于
$$B=\left( {\begin{array}{*{20}{c}}
{-1}&{-1}\\
{2}&{1}
\end{array}} \right)$$
  所以
$$B^*=\left( {\begin{array}{*{20}{c}}
{1}&{1}\\
{-2}&{-1}
\end{array}} \right)$$
  并且$|B|=1$
  故
$$B^{-1}=\left( {\begin{array}{*{20}{c}}
{1}&{1}\\
{-2}&{-1}
\end{array}} \right)$$
  在$M_2(K)$中取一组基
$$\epsilon_{11}=\left( {\begin{array}{*{20}{c}}
{1}&{0}\\
{0}&{0}
\end{array}} \right),\epsilon_{12}=\left( {\begin{array}{*{20}{c}}
{0}&{1}\\
{0}&{0}
\end{array}} \right),\epsilon_{21}=\left( {\begin{array}{*{20}{c}}
{0}&{0}\\
{1}&{0}
\end{array}} \right),\epsilon_{22}=\left( {\begin{array}{*{20}{c}}
{0}&{0}\\
{0}&{1}
\end{array}} \right)$$
  就有
$$\begin{eqnarray*}
A\epsilon_{11}&=&B^{-1}\epsilon_{11}B=\left( {\begin{array}{*{20}{c}}
{1}&{1}\\
{-2}&{-1}
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
{1}&{0}\\
{0}&{0}
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
{-1}&{-1}\\
{2}&{1}
\end{array}} \right)\\
&=&\left( {\begin{array}{*{20}{c}}
{-1}&{-1}\\
{2}&{2}
\end{array}} \right)=-\epsilon_{11}-\epsilon_{12}+2\epsilon_{21}+2\epsilon_{22}
\end{eqnarray*}$$
$$\begin{eqnarray*}
A\epsilon_{12}&=&B^{-1}\epsilon_{12}B=\left( {\begin{array}{*{20}{c}}
{1}&{1}\\
{-2}&{-1}
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
{0}&{1}\\
{0}&{0}
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
{-1}&{-1}\\
{2}&{1}
\end{array}} \right)\\
&=&\left( {\begin{array}{*{20}{c}}
{2}&{1}\\
{-4}&{-2}
\end{array}} \right)=2\epsilon_{11}+\epsilon_{12}-4\epsilon_{21}-2\epsilon_{22}
\end{eqnarray*}$$
$$\begin{eqnarray*}
A\epsilon_{21}&=&B^{-1}\epsilon_{21}B=\left( {\begin{array}{*{20}{c}}
{1}&{1}\\
{-2}&{-1}
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
{0}&{0}\\
{1}&{0}
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
{-1}&{-1}\\
{2}&{1}
\end{array}} \right)\\
&=&\left( {\begin{array}{*{20}{c}}
{-1}&{-1}\\
{1}&{1}
\end{array}} \right)=-\epsilon_{11}-\epsilon_{12}+\epsilon_{21}+\epsilon_{22}
\end{eqnarray*}$$
$$\begin{eqnarray*}
A\epsilon_{22}&=&B^{-1}\epsilon_{22}B=\left( {\begin{array}{*{20}{c}}
{1}&{1}\\
{-2}&{-1}
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
{0}&{0}\\
{0}&{1}
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
{-1}&{-1}\\
{2}&{1}
\end{array}} \right)\\
&=&\left( {\begin{array}{*{20}{c}}
{2}&{1}\\
{-2}&{-1}
\end{array}} \right)=2\epsilon_{11}+\epsilon_{12}-2\epsilon_{21}-\epsilon_{22}
\end{eqnarray*}$$
  所以
$$\left\{ \begin{array}{l}
A\epsilon_{11}=-\epsilon_{11}-\epsilon_{12}+2\epsilon_{21}+2\epsilon_{22}\\
A\epsilon_{12}=2\epsilon_{11}+\epsilon_{12}-4\epsilon_{21}-2\epsilon_{22}\\
A\epsilon_{21}=-\epsilon_{11}-\epsilon_{12}+\epsilon_{21}+\epsilon_{22}\\
A\epsilon_{22}=2\epsilon_{11}+\epsilon_{12}-2\epsilon_{21}-\epsilon_{22}
\end{array} \right.$$
  $A$在这组基下的矩阵为
$$A=\left( {\begin{array}{*{20}{c}}
{-1}&{2}&{-1}&{2}\\
{-1}&{1}&{-1}&{1}\\
{2}&{-4}&{1}&{-2}\\
{2}&{-2}&{1}&{-1}
\end{array}} \right)$$
  $A$的特征多项式为
$$f(\lambda)=(\lambda^2-1)^2$$
  属于特征值$\lambda_0=1$的其中一个特征向量是
$$\left( {\begin{array}{*{20}{c}}
{-1}\\
{-\frac{1}{2}}\\
{1}\\
{0}
\end{array}} \right)$$
  由于任何数域都包含有理数域作为它的一部分,所以上述所求的特征值和特征向量符合题意
  故取
$$\lambda_0=1,X_0=\left( {\begin{array}{*{20}{c}}
{-1}&{-\frac{1}{2}}\\
{1}&{0}
\end{array}} \right)$$
  使
$$AX_0=\lambda_0X_0$$
分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 分享分享 分享淘帖 顶 踩
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

QQ|网站统计|手机版|小黑屋|数学之家    

GMT+8, 2024-11-23 08:43 , Processed in 1.140625 second(s), 24 queries .

Powered by Discuz! X3.1

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表