|
习题二8:
给定数域$K$上的$n$元二次型
$$f=X'AX$$
对它作可逆线性变数替换
$$X=TY$$
其中$T$为主对角线上元素全为$1$的上三角矩阵,$f$经此变换化为二次型
$$g=Y'BY$$
证明$A$与$B$的下列子式相等
$$A\left\{\begin{array}{*{20}{c}}
{1}&{2}&{\cdots}&{r}\\
{1}&{2}&{\cdots}&{r}
\end{array}\right\}=B\left\{\begin{array}{*{20}{c}}
{1}&{2}&{\cdots}&{r}\\
{1}&{2}&{\cdots}&{r}
\end{array}\right\},r=1,2,\cdots,n$$
此类线性变数替换
$$X=TY$$
成为三角形变换。
解:
设
$$T=\left( {\begin{array}{*{20}{c}}
{1}&{t_{12}}&{}&{\cdots}&{t_{1n}}\\
{}&{1}&{t_{23}}&{\cdots}&{t_{2n}}\\
{}&{}&{\ddots}&{}&{\vdots}\\
{}&{}&{}&{\ddots}&{\vdots}\\
{}&{}&{}&{}&{1}
\end{array}} \right)$$
令
$$X=TY$$
则
$$f=X'AX=Y'(T'AT)Y=Y'BY$$
这里
$$B=T'AT$$
现对$A,T,B$进行分块
$$A=\left( {\begin{array}{*{20}{c}}
{A_1}&{A_2}\\
{A_3}&{A_4}
\end{array}} \right),T=\left( {\begin{array}{*{20}{c}}
{T_1}&{T_2}\\
{}&{T_3}
\end{array}} \right),B=\left( {\begin{array}{*{20}{c}}
{B_1}&{B_2}\\
{B_3}&{B_4}
\end{array}} \right)$$
其中$A_1,T_1,B_1$均为$r$阶方阵。我们有
$$\begin{eqnarray*}
T'AT&=&\left( {\begin{array}{*{20}{c}}
{T'_1}&{}\\
{T'_2}&{T'_3}
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
{A_1}&{A_2}\\
{A_3}&{A_4}
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
{T_1}&{T_2}\\
{}&{T_3}
\end{array}} \right)\\
&=&\left( {\begin{array}{*{20}{c}}
{T'_1A_1T_1}&{T'_1A_1T_2+T'_1A_2T_3}\\
{T'_2A_1T_1+T'_3A_3T_1}&{T'_2A_1T_2+T'_3A_3T_2+T'_2A_2T_3+T'_3A_4T_3}
\end{array}} \right)\\
&=&\left( {\begin{array}{*{20}{c}}
{B_1}&{B_2}\\
{B_2}&{B_4}
\end{array}} \right)
\end{eqnarray*}$$
因此
$$B_1=T'_1A_1T_1$$
我们有
$$\begin{eqnarray*}
B\left\{\begin{array}{*{20}{c}}
{1}&{2}&{\cdots}&{r}\\
{1}&{2}&{\cdots}&{r}
\end{array}\right\}&=&|B_1|=|T'_1A_1T_1|=|T_1|^2|A_1|\\
&=&|A_1|=A\left\{\begin{array}{*{20}{c}}
{1}&{2}&{\cdots}&{r}\\
{1}&{2}&{\cdots}&{r}
\end{array}\right\}
\end{eqnarray*}$$ |
|