定理1 若函数$u\left( x \right)$和$v\left( x \right)$在点$x_0$可导,则函数$f\left( x \right)=u\left( x \right) \pm v\left( x \right)$在点$x_0$也可导,且
$$f'\left( x_0 \right)=u'\left( x_0 \right) \pm v'\left( x_0 \right)$$
定理2 若函数$u\left( x \right)$和$v\left( x \right)$在点$x_0$可导,则函数$f\left( x \right)=u\left( x \right)v\left( x \right)$在点$x_0$也可导,且
$$f'\left( x_0 \right)=u'\left( x_0 \right)v\left( x_0 \right)+u\left( x_0 \right)v'\left( x_0 \right)$$
推论 若函数$v\left( x \right)$在点$x_0$可导,$c$为常数,则
$$\left( cv\left( x \right) \right)'_{x=x_0}=cv'\left( x_0 \right)$$
定理3 若函数$u\left( x \right)$和$v\left( x \right)$在点$x_0$都可导,且$v\left( x_0 \right) \ne 0$,则$f\left( x \right)=\frac{u\left( x \right)}{v\left( x \right)}$在点$x_0$也可导,且
$$f'\left( x_0 \right)=\frac{u'\left( x_0 \right)v\left( x_0 \right)-u\left( x_0 \right)v'\left( x_0 \right)}{\left[ v\left( x_0 \right) \right]^2}$$