数学之家

建站
数学爱好者的家园
 找回密码
 注册

QQ登录

只需一步,快速开始

查看: 1499|回复: 4
打印 上一主题 下一主题

[已解决] 自然数个数问题

[复制链接]
跳转到指定楼层
楼主
发表于 2010-2-18 13:14:47 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
本帖最后由 474394820 于 2010-2-18 13:25 编辑

调换一个自然数的末位和首位,一个是另一个的二倍,问这样的自然数有多少个
如果不是二倍,是任意正整数倍呢
分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 分享分享 分享淘帖 顶 踩
回复

使用道具 举报

沙发
发表于 2010-2-19 08:35:37 | 只看该作者
本帖最后由 元蛟 于 2010-2-19 09:38 编辑

如果是第一问,那有零个。这很显然。
第二问同理
回复 支持 反对

使用道具 举报

板凳
发表于 2010-2-19 11:20:58 | 只看该作者
2# 元蛟
第一问,那有零个不用证明
第二问怎么同理?
回复 支持 反对

使用道具 举报

地板
发表于 2010-2-19 13:11:28 | 只看该作者
本帖最后由 石崇的BOSS 于 2010-2-19 21:53 编辑

先设原来的数的数位为n,则原来的数=a*10n-1+10x+b,后面的数=b*10n-1+10x+a
先讨论2倍的情况,a*10n-1+10x+b10x+b=2[b*10n-1+10x+a],
合并同类项,得a(10n-1-2)=b(102(n-1)-1)+10x
然后将左边a的系数除到右边去,得(后面的式子我不会打,就用语言简述)
并将右边化为带分数的形式,其整数部分为2b,分子为3b+10x,分母为10n-1-2,
显然此分子不能为分母的两倍,更不可能为0,
所以3b+10x=10n-1-2,左右模10得b=6,
所以a=13矛盾了
回复 支持 反对

使用道具 举报

5#
发表于 2010-2-19 13:13:37 | 只看该作者
至于第二问呢,只要在把2换成3,4,5,6,7,8,9讨论在讨论一遍就行了。
因为数字变大了,得出矛盾更容易。一点也不麻烦
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

QQ|网站统计|手机版|小黑屋|数学之家    

GMT+8, 2024-12-27 02:36 , Processed in 1.184495 second(s), 21 queries .

Powered by Discuz! X3.1

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表