|
练习1.6.3:
证明:若$x_n>0(n=1,2,\cdots)$及
$$\overline{\lim\limits_{n \to \infty}}x_n\cdot\overline{\lim\limits_{n \to \infty}}\frac{1}{x_n}=1$$
则序列$\left\{x_n\right\}$收敛。
解:
由
$$\overline{\lim\limits_{n \to \infty}}x_n\cdot\overline{\lim\limits_{n \to \infty}}\frac{1}{x_n}=1$$
知
$$\overline{\lim\limits_{n \to \infty}}x_n \ne 0,+\infty;\overline{\lim\limits_{n \to \infty}}\frac{1}{x_n} \ne 0,+\infty$$
由于$x_n>0$,存在$\left\{x_n \right\}$的一个子列$\left\{x_{n_k}\right\}$,使得
$$\overline{\lim\limits_{n \to \infty}}\frac{1}{x_n}=\lim\limits_{k \to \infty}\frac{1}{x_{n_k}}=\frac{1}{\lim\limits_{k \to \infty} x_{n_k}} \le \frac{1}{\lim\limits_{\overline{n \to \infty}}x_n}$$
又存在$\left\{x_n \right\}$的另一个子列$\left\{x_{m_k}\right\}$,使得
$$\frac{1}{\lim\limits_{\overline{n \to \infty}}{x_n}}=\frac{1}{\lim\limits_{k \to \infty} x_{m_k}}=\lim\limits_{k \to \infty}\frac{1}{x_{m_k}} \le \overline{\lim\limits_{n \to \infty}}\frac{1}{x_n}$$
所以
$$\overline{\lim\limits_{n \to \infty}}\frac{1}{x_n}=\frac{1}{\lim\limits_{\overline{n \to \infty}}{x_n}}$$
条件
$$\overline{\lim\limits_{n \to \infty}}x_n\cdot\overline{\lim\limits_{n \to \infty}}\frac{1}{x_n}=1$$
可以写成
$$\overline{\lim\limits_{n \to \infty}}x_n\cdot\frac{1}{\lim\limits_{\overline{n \to \infty}}{x_n}}=1$$
从而
$$\overline{\lim\limits_{n \to \infty}}x_n=\lim\limits_{\overline{n \to \infty}}x_n(\ne +\infty)$$
故$\left\{x_n\right\}$收敛。 |
|