|
练习4.3.10:
对自然数$n \ge 2$,证明
$$\frac{1}{\pi}\int_0^{\frac{\pi}{2}}\left| \frac{\sin (2n+1)t}{\sin t} \right|dt < \frac{2+\ln n}{2}$$
解法1:
$$\begin{eqnarray*}
I&=&\frac{1}{\pi}\int_0^{\frac{\pi}{4n+2}}\left|\frac{\sin (2n+1)t}{\sin t}\right|dt+\frac{1}{\pi}\int_{\frac{\pi}{4n+2}}^{\frac{\pi}{2}}\left|\frac{\sin (2n+1)t}{\sin t}\right|dt\\
&<&\frac{1}{\pi}\int_0^{\frac{\pi}{4n+2}}(2n+1)dt+\frac{1}{\pi}\int_{\frac{\pi}{4n+2}}^{\frac{\pi}{2}}\frac{1}{\frac{2}{\pi}t}dt\\
&<&\frac{2+\ln n}{2}
\end{eqnarray*}$$
解法2:
当
$$\epsilon \in \left(0,\frac{\pi}{2}\right)$$
时有
$$\begin{eqnarray*}
I&=&\frac{1}{\pi}\int_0^{\frac{\pi}{2}}\left|\frac{\sin(2n+1)t}{\sin t}\right|dt\\
&\le&\frac{1}{\pi}\left((2n+1)\int_0^{\epsilon}dt+\frac{1}{2}\int_{\epsilon}^{\frac{\pi}{2}}\frac{1}{t}dt\right)\\
&=&\frac{2n+1}{\pi}\epsilon-\frac{1}{2}\ln\epsilon+\frac{1}{2}\ln\frac{\pi}{2}
\end{eqnarray*}$$
将$n$看作常数,$\epsilon$看作变量
要使上面的不等式
$$\forall \epsilon \in \left(0,\frac{\pi}{2}\right)$$
恒成立,只要原积分$I$小于右端的最小值
对$\epsilon$求导,可以得出当
$$\epsilon=\frac{\pi}{4n+2}$$
时右端取得最小值
$$\frac{1}{2}+\frac{1}{2}\ln(2n+1)<\frac{2+\ln n}{2}$$
上式对$n \ge 2$都成立。 |
|