数学之家

建站
数学爱好者的家园
 找回密码
 注册

QQ登录

只需一步,快速开始

查看: 1960|回复: 0
打印 上一主题 下一主题

[已解决] 裴礼文 级数 476页 练习5.1.11 解答

[复制链接]
跳转到指定楼层
楼主
发表于 2016-4-20 23:58:45 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
练习5.1.11:

  证明:若$a_n>0$,$a_n \searrow 0$,则$\sum\limits_{n=1}^{\infty}a_n$与$\sum\limits_{m=1}^{\infty}p_m2^{-m}$($p_m=\max\left\{n;a_n \ge 2^{-m}\right\}$)同时敛散。($Lobachevsky$判别法)



解:
  由
$$\begin{eqnarray*}
\sum\limits_{k=1}^mp_k2^{-k}&=&\sum\limits_{k=1}^mp_k\left(\frac{1}{2^{k-1}}-\frac{1}{2^k}\right)\\
&=&\sum\limits_{k=0}^{m-1}\frac{p_{k+1}}{2^k}-\sum\limits_{k=1}^m\frac{p_k}{2^k}\\
&=&p_0-\frac{p^m}{2^m}+\sum\limits_{k=1}^{m-1}\frac{p_{k+1}-p_k}{2^k}\\
&=&p_0-\frac{p^m}{2^m}+2\sum\limits_{k=1}^{m-1}(p_{k+1}-p_k)2^{-(k+1)}\\
&\le&p_0+2\sum\limits_{k=1}^{m-1}(p_{k+1}-p_k)a_{p_{k+1}}\\
&\le&p_0+2\sum\limits_{k=1}^{m-1}(a_{p_{k}+1}+\cdots+a_{p_{k+1}})\\
&=&p_0+2(a_{p_{1}+1}+a_{p_{1}+2}+\cdots+a_{p_{m}})
\end{eqnarray*}$$
  知若$\sum\limits_{n=1}^{\infty}a_n$收敛,则$\sum\limits_{m=1}^{\infty}p_m2^{-m}$也收敛;若$\sum\limits_{m=1}^{\infty}p_m2^{-m}$发散,则$\sum\limits_{n=1}^{\infty}a_n$也发散。
  又由
$$\begin{eqnarray*}
\sum\limits_{k=1}^mp_k2^{-k}&=&\sum\limits_{k=1}^mp_k\left(\frac{1}{2^{k-1}}-\frac{1}{2^k}\right)\\
&=&\sum\limits_{k=0}^{m-1}\frac{p_{k+1}}{2^k}-\sum\limits_{k=1}^m\frac{p_k}{2^k}\\
&=&p_0-\frac{p^m}{2^m}+\sum\limits_{k=1}^{m-1}\frac{p_{k+1}-p_k}{2^k}\\
&=&p_0-\frac{p^m}{2^m}+2\sum\limits_{k=1}^{m-1}(p_{k+1}-p_k)2^{-(k+1)}\\
&>&p_0-\frac{p^m}{2^m}+2\sum\limits_{k=1}^{m-1}(p_{k+1}-p_k)a_{p_{k+1}+1}\\
&\ge&p_0-\frac{p^m}{2^m}+2\sum\limits_{k=1}^{m-1}(a_{p_{k}+2}+\cdots+a_{p_{k+1}+1})\\
&=&p_0-\frac{p^m}{2^m}+2(a_{p_{1}+2}+a_{p_{1}+3}+\cdots+a_{p_{m}+1})
\end{eqnarray*}$$
  知若$\sum\limits_{m=1}^{\infty}p_m2^{-m}$收敛,则$\sum\limits_{n=1}^{\infty}a_n$也收敛;若$\sum\limits_{n=1}^{\infty}a_n$发散,则$\sum\limits_{m=1}^{\infty}p_m2^{-m}$也发散。
分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 分享分享 分享淘帖 顶 踩
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

QQ|网站统计|手机版|小黑屋|数学之家    

GMT+8, 2024-12-23 17:39 , Processed in 1.125000 second(s), 20 queries .

Powered by Discuz! X3.1

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表