数学之家

建站
数学爱好者的家园
 找回密码
 注册

QQ登录

只需一步,快速开始

查看: 2595|回复: 0
打印 上一主题 下一主题

[已解决] 蓝以中下册 一元多项式环 175页 习题二7 解答

[复制链接]
跳转到指定楼层
楼主
发表于 2016-7-30 20:33:41 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
习题二7:
  在$R[x]$内求下列多项式的素因式标准分解式:
(1)
$$x^{2n}-1$$
(2)
$$x^{2n+1}-1$$
(3)
$$x^{2n+1}+1$$
(4)
$$x^{2n}+1$$



解:
$$\begin{eqnarray*}
x^{2n}-1&=&\prod\limits_{k=0}^{2n-1}\left(x-e^{\frac{k\pi i}{n}}\right)\\
&=&(x-1)(x+1)\prod\limits_{k=1}^{n-1}\left(x-e^{\frac{k\pi i}{n}}\right)\left(x-e^{\frac{(2n-k)\pi i}{n}}\right)\\
&=&(x-1)(x+1)\prod\limits_{k=1}^{n-1}\left(x^2-2\cos{\frac{k\pi}{n}}x+1\right)
\end{eqnarray*}$$
$$\begin{eqnarray*}
x^{2n+1}-1&=&(x-1)\prod\limits_{k=1}^{2n}\left(x-e^{\frac{2k\pi i}{2n+1}}\right)\\
&=&(x-1)\prod\limits_{k=1}^{n}\left(x-e^{\frac{2k\pi i}{2n+1}}\right)\left(x-e^{\frac{(2n+1-2k)\pi i}{2n+1}}\right)\\
&=&(x-1)\prod\limits_{k=1}^{n}\left(x^2-2\cos{\frac{2k\pi}{2n+1}}x+1\right)
\end{eqnarray*}$$
$$\begin{eqnarray*}
x^{2n+1}+1&=&\prod\limits_{k=0}^{2n}\left(x-e^{\frac{(2k+1)\pi i}{2n+1}}\right)\\
&=&(x+1)\prod\limits_{k=0}^{n-1}\left(x-e^{\frac{(2k+1)\pi i}{2n+1}}\right)\left(x-e^{\frac{(2n-2k)\pi i}{2n+1}}\right)\\
&=&(x+1)\prod\limits_{k=0}^{n-1}\left(x^2-2\cos{\frac{(2k+1)\pi}{2n+1}}x+1\right)
\end{eqnarray*}$$
$$\begin{eqnarray*}
x^{2n}+1&=&\prod\limits_{k=0}^{2n-1}\left(x-e^{\frac{(2k+1)\pi i}{2n}}\right)\\
&=&\prod\limits_{k=0}^{n-1}\left(x-e^{\frac{(2k+1)\pi i}{2n}}\right)\left(x-e^{\frac{(2n-2k-1)\pi i}{2n}}\right)\\
&=&\prod\limits_{k=0}^{n-1}\left(x^2-2\cos{\frac{(2k+1)\pi}{2n}}x+1\right)
\end{eqnarray*}$$
分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 分享分享 分享淘帖 顶 踩
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

QQ|网站统计|手机版|小黑屋|数学之家    

GMT+8, 2024-11-22 15:19 , Processed in 1.156250 second(s), 24 queries .

Powered by Discuz! X3.1

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表