数学之家

建站
数学爱好者的家园
 找回密码
 注册

QQ登录

只需一步,快速开始

查看: 2973|回复: 0
打印 上一主题 下一主题

[已解决] 蓝以中下册 多元多项式环 209页 习题一12 解答

[复制链接]
跳转到指定楼层
楼主
发表于 2016-8-1 21:30:18 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
习题一12:
  设$K$是一个包含无穷多个元素的域,$A,B$是$K$上两个$n$阶方阵,证明
$$(AB)^*=B^*A^*$$
  这里$A^*$表示$A$的伴随矩阵。



解:
(1)若$A$与$B$均可逆,则
$$A^*=|A|A^{-1},B^*=|B|B^{-1}$$
  此时$AB$也可逆,且
$$\begin{eqnarray*}
(AB)^*&=&|AB|(AB)^{-1}=|A||B|B^{-1}A^{-1}\\
&=&(|B|B^{-1})(|A|A^{-1})=B^*A^*
\end{eqnarray*}$$
(2)若$B$可逆,$A$不可逆。令$X=(x_{ij})$。而
$$f(x_{11},x_{12},\cdots,x_{nn})=(XB)^*-B^*X^*$$
  它是
$$x_{11},x_{12},\cdots,x_{nn}$$
  的一个多项式
  当
$$X=A=(a_{ij})$$
  为可逆矩阵时,由(1)知
$$f(a_{11},a_{12},\cdots,a_{nn})=0$$
  按《蓝以中下册 多元多项式环 208页 习题一4 解答》,$f$为零多项式,即对
$$X=A$$
  为任意$n$阶方阵
$$(AB)^*-B^*A^*=0$$
(3)若$A,B$均不可逆。令
$$X=(x_{ij})$$
  而
$$f(x_{11},x_{12},\cdots,x_{nn})=(AX)^*-X^*A^*$$
  由(1)及(2)知对任意可逆方阵
$$B=(b_{ij})$$
  有
$$f(b_{11},b_{12},\cdots,b_{nn})=(AB)^*-B^*A^*=0$$
  按《蓝以中下册 多元多项式环 208页 习题一4 解答》,$f$为零多项式,即对一切$n$阶方阵$B$,都有
$$(AB)^*=B^*A^*$$
分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 分享分享 分享淘帖 顶 踩
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

QQ|网站统计|手机版|小黑屋|数学之家    

GMT+8, 2025-1-22 18:49 , Processed in 1.308644 second(s), 24 queries .

Powered by Discuz! X3.1

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表