|
习题二13:
设$f(x)$是无重根的$n$次实系数多项式,它的$n$个根的$k$次方之和记为$s_k$。证明$f(x)$的实根个数等于下面实二次型的符号差:
$$f(x_1,\cdots,x_n)=\sum\limits_{i=1}^n\sum\limits_{j=1}^ns_{i+j-2}x_ix_j$$
解:
设$f(x)$在$C$内的根为
$$\alpha_1,\cdots,\alpha_n$$
我们有
$$\begin{eqnarray*}
S&=&\left( {\begin{array}{*{20}{c}}
{s_0}&{s_1}&{\cdots}&{s_{n-1}}\\
{s_1}&{s_2}&{\cdots}&{s_n}\\
{\vdots}&{\vdots}&{}&{\vdots}\\
{s_{n-1}}&{s_n}&{\cdots}&{s_{2n-2}}
\end{array}} \right)\\
&=&\left( {\begin{array}{*{20}{c}}
{1}&{1}&{\cdots}&{1}\\
{\alpha_1}&{\alpha_2}&{\cdots}&{\alpha_n}\\
{\vdots}&{\vdots}&{}&{\vdots}\\
{\alpha_1^{n-1}}&{\alpha_2^{n-2}}&{\cdots}&{\alpha_n^{n-1}}
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
{1}&{\alpha_1}&{\cdots}&{\alpha_1^{n-1}}\\
{1}&{\alpha_2}&{\cdots}&{\alpha_2^{n-1}}\\
{\vdots}&{\vdots}&{}&{\vdots}\\
{1}&{\alpha_n}&{\cdots}&{\alpha_n^{n-1}}
\end{array}} \right)
\end{eqnarray*}$$
令
$$A=\left( {\begin{array}{*{20}{c}}
{1}&{\alpha_1}&{\cdots}&{\alpha_1^{n-1}}\\
{1}&{\alpha_2}&{\cdots}&{\alpha_2^{n-1}}\\
{\vdots}&{\vdots}&{}&{\vdots}\\
{1}&{\alpha_n}&{\cdots}&{\alpha_n^{n-1}}
\end{array}} \right)$$
则
$$f(x_1,x_2,\cdots,x_n)=X'SX=X'(A'A)X=(AX)'(AX)$$
设
$$y_i=x_1+\alpha_ix_2+\alpha_i^2x_3+\cdots+\alpha_i^{n-1}x_n$$
则有
$$f(x_1,x_2,\cdots,x_n)=(AX)'(AX)=y_1^2+y_2^2+\cdots+y_n^2$$
现设
$$\alpha_1,\alpha_2,\cdots,\alpha_k$$
为$f(x)$的不同实根,而
$$\beta_i=\alpha_{k+i},\overline{\beta_i}(i=1,2,\cdots,s)$$
为$f(x)$的$s$对共轭复根
此时$y_j$为实线性型$(j=1,2,\cdots,k)$,而
$$y_{k+j}=m_j(x_1,x_2,\cdots,x_n)+il_j(x_1,x_2,\cdots,x_n)$$
$$\overline{y_{k+j}}=m_j(x_1,x_2,\cdots,x_n)-il_j(x_1,x_2,\cdots,x_n)$$
其中
$$m_j(x_1,x_2,\cdots,x_n)$$
与
$$l_j(x_1,x_2,\cdots,x_n)$$
均为实线性型。现在
$$\begin{eqnarray*}
y_{k+j}^2+\overline{y_{k+j}}^2&=&(m_j+il_j)^2+(m_j-il_j)^2\\
&=&m_j^2-l_j^2+2im_jl_j+m_j^2-l_j^2-2im_jl_j\\
&=&(\sqrt 2m_j)^2-(\sqrt 2l_j)^2
\end{eqnarray*}$$
因此
$$f(x_1,x_2,\cdots,x_n)=\sum\limits_{t=1}^ky_t^2+\sum\limits_{j=1}^s(\sqrt 2m_j)^2-\sum\limits_{j=1}^s(\sqrt 2l_j)^2$$
上面
$$y_1,\cdots,y_k,\sqrt 2m_1,\cdots,\sqrt 2m_s,\sqrt 2l_1,\cdots,\sqrt 2l_s$$
均为实线性型。现在
$$k+2s=n$$
因为
$$\alpha_1,\alpha_2,\cdots,\alpha_n$$
两两不同,故$S$满秩,即实二次型
$$f(x_1,x_2,\cdots,x_n)$$
满秩
$$f(x_1,x_2,\cdots,x_n)$$
的正惯性指数
$$p \le k+s$$
负惯性指数
$$q \le s$$
而
$$f(x_1,x_2,\cdots,x_n)$$
满秩,应有
$$p+q=n$$
现在有
$$(k+s)+s=n$$
故必
$$p=k+s,q=s$$
于是
$$f(x_1,x_2,\cdots,x_n)的符号差=p-q=(k+s)-s=k=f(x)$$
实根的个数。 |
|