定理1(唯一性) 若极限$\lim\limits_{x \rightarrow x_0}f\left( x \right)$存在,则此极限是唯一的。
定理2(局部有界性) 若$\lim\limits_{x \rightarrow x_0}f\left( x \right)$存在,则$f$在$x_0$的某空心邻域$U^\circ \left( x_0 \right)$内有界。
定理3(局部保号性) 若$\lim\limits_{x \rightarrow x_0}f\left( x \right) = A > 0$(或$<0$),则对任何正数$r < A$(或$r < -A$),存在$U^\circ \left( x_0 \right)$,使得对一切$x \in U^\circ \left( x_0 \right)$有
$$f\left( x \right) > r > 0(或f\left( x \right) < -r < 0)。$$
定理4(保不等式性) 设$\lim\limits_{x \rightarrow x_0}f\left( x \right)$与$\lim\limits_{x \rightarrow x_0}g\left( x \right)$都存在,且在某邻域$U^\circ \left( x_0;\delta' \right)$内有$f\left( x \right) \le g\left( x \right)$,则
$$\lim\limits_{x \rightarrow x_0}f\left( x \right) \le \lim\limits_{x \rightarrow x_0}g\left( x \right)$$
定理5(迫敛性) 设$\lim\limits_{x \rightarrow x_0}f\left( x \right) = \lim\limits_{x \rightarrow x_0}g\left( x \right) = A$,且在某$U^\circ \left( x_0;\delta' \right)$内有
$$f\left( x \right) \le h\left( x \right) \le g\left( x \right),$$
则$\lim\limits_{x \rightarrow x_0}h\left( x \right) = A$。
定理6(四则运算法则) 若极限$\lim\limits_{x \rightarrow x_0}f\left( x \right)$与$\lim\limits_{x \rightarrow x_0}g\left( x \right)$都存在,则函数$f \pm g$,$f*g$当$x \to x_0$时极限也存在,且
(1)$\lim\limits_{x \rightarrow x_0}\left[ f\left( x \right) \pm g\left( x \right) \right] = \lim\limits_{x \rightarrow x_0}f\left( x \right) \pm \lim\limits_{x \rightarrow x_0}g\left( x \right)$;
(2)$\lim\limits_{x \rightarrow x_0}\left[ f\left( x \right)g\left( x \right) \right] = \lim\limits_{x \rightarrow x_0}f\left( x \right) \cdot \lim\limits_{x \rightarrow x_0}g\left( x \right)$;
又若$\lim\limits_{x \rightarrow x_0}g\left( x \right) \ne 0$,则$\frac{f}{g}$当$x \to x_0$时极限存在,且有
(3)$\lim\limits_{x \rightarrow x_0}\frac{f\left( x \right)}{g\left( x \right)} = \frac{\lim\limits_{x \rightarrow x_0}f\left( x \right)}{\lim\limits_{x \rightarrow x_0}g\left( x \right)}$。