数学之家

建站
数学爱好者的家园
 找回密码
 注册

QQ登录

只需一步,快速开始

查看: 1895|回复: 0
打印 上一主题 下一主题

[数学分析] 二元函数中值定理

[复制链接]
跳转到指定楼层
楼主
发表于 2017-11-8 22:58:17 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
定理(中值定理) 设二元函数$f$在凸开域$D \subset R^2$上连续,在$D$的所有内点都可微,则对$D$内任意两点$P(a,b)$,$Q(a+h,b+k) \in D$,存在某$\theta$($0< \theta <1$),使得
$$f(a+h,b+k)-f(a,b)=f_x(a+\theta h,b+\theta k)h+f_y(a+\theta h,b+\theta k)k。$$

注意 若$D$是闭凸域,且对$D$上任意两点$P_1(x_1,y_1)$,$P_2(x_2,y_2)$及任意$\lambda$($0< \lambda <1$),都有
$$P(x_1+\lambda(x_2-x_1),y_1+\lambda(y_2-y_1)) \in {\rm int} D,$$
  则对$D$上连续,${\rm int} D$内可微的函数$f$,只要$P$,$Q \in D$,也存在$\theta \in (0,1)$使公式成立。
  公式也称为二元函数(在凸域上)的中值公式。

推论 若函数$f$在区域$D$上存在偏导数,且
$$f_x=f_y \equiv 0,$$
  则$f$在区域$D$上为常量函数。
分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 分享分享 分享淘帖 顶 踩
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

QQ|网站统计|手机版|小黑屋|数学之家    

GMT+8, 2024-11-22 14:41 , Processed in 1.125000 second(s), 20 queries .

Powered by Discuz! X3.1

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表