数学之家

建站
数学爱好者的家园
 找回密码
 注册

QQ登录

只需一步,快速开始

查看: 1633|回复: 0
打印 上一主题 下一主题

[数学分析] Jacobi矩阵

[复制链接]
跳转到指定楼层
楼主
发表于 2017-11-8 23:01:24 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
  假设$F:R_n \to R_m$是一个从欧式$n$维空间转换到欧式$m$维空间的函数.这个函数由$m$个实函数组成:$y_1(x_1,\cdots,x_n)$,$\cdots$,$y_m(x_1,\cdots,x_n)$。这些函数的偏导数可以组成一个$m$行$n$列的矩阵,这就是Jacobi矩阵:
$$\left( {\begin{array}{*{20}{c}} \frac{\partial y_1}{\partial x_1}&\cdots&\frac{\partial y_n}{\partial x_1}\\ \vdots&\ddots&\vdots\\ \frac{\partial y_m}{\partial x_1}&\cdots&\frac{\partial y_m}{\partial x_n} \end{array}} \right)$$
  此矩阵表示为:
$$J_F(x_1,\cdots,x_n),或者\frac{\partial (y_1,\cdots,y_m)}{\partial (x_1,\cdots,x_n)}。$$
  这个矩阵的第$i$行是由梯度函数的转置$y_i$($i=1,\cdots,m$)表示的。
分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 分享分享 分享淘帖 顶 踩
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

QQ|网站统计|手机版|小黑屋|数学之家    

GMT+8, 2025-1-16 01:03 , Processed in 1.555565 second(s), 20 queries .

Powered by Discuz! X3.1

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表