数学之家

建站
数学爱好者的家园
 找回密码
 注册

QQ登录

只需一步,快速开始

查看: 1948|回复: 0
打印 上一主题 下一主题

[数学分析] 微分形式的外微分

[复制链接]
跳转到指定楼层
楼主
发表于 2017-11-8 23:09:57 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
  对三维空间中各种微分形式$w^k$,可以定义它们的外微分$dw^k$:
$$dw^0=dF=\frac{\partial F}{\partial x}dx+\frac{\partial F}{\partial y}dy+\frac{\partial F}{\partial z}dz。$$
$$dw^1=dP \wedge dx+dQ \wedge dy+dR \wedge dz。$$
$$dw^2=dP \wedge dy \wedge dz+dQ \wedge dz \wedge dx+dR \wedge dx \wedge dy。$$
$$dw^3=dF \wedge dx \wedge dy \wedge dz。$$
  运用外积的运算律与性质,上述各式可化简为
$$dw^1=(\frac{\partial P}{\partial x}dx+\frac{\partial P}{\partial y}dy+\frac{\partial P}{\partial z}dz) \wedge dx+(\frac{\partial Q}{\partial x}dx+\frac{\partial Q}{\partial y}dy+\frac{\partial Q}{\partial z}dz) \wedge dy+(\frac{\partial R}{\partial x}dx+\frac{\partial R}{\partial y}dy+\frac{\partial R}{\partial z}dz) \wedge dz$$
$$=\frac{\partial R}{\partial y}dy \wedge dz-\frac{\partial Q}{\partial z}dy \wedge dz+\frac{\partial P}{\partial z}dz \wedge dx-\frac{\partial R}{\partial x}dz \wedge dx+\frac{\partial Q}{\partial x}dx \wedge dy-\frac{\partial P}{\partial y}dx \wedge dy$$
$$=(\frac{\partial R}{\partial y}dy-\frac{\partial Q}{\partial z})dy \wedge dz+(\frac{\partial P}{\partial z}dy-\frac{\partial R}{\partial x})dz \wedge dx+(\frac{\partial Q}{\partial x}dy-\frac{\partial P}{\partial y})dx \wedge dy。$$
  同样可推得
$$dw^2=(\frac{\partial P}{\partial x}dy+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z})dx \wedge dy \wedge dz,$$
$$dw^3=0。$$
  由此可见$k$($<3$)次微分形式的外微分是$k+1$次微分形式,但三次微分形式的外微分为零。
分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 分享分享 分享淘帖 顶 踩
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

QQ|网站统计|手机版|小黑屋|数学之家    

GMT+8, 2024-11-25 07:11 , Processed in 1.093743 second(s), 20 queries .

Powered by Discuz! X3.1

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表