数学之家

建站
数学爱好者的家园
 找回密码
 注册

QQ登录

只需一步,快速开始

查看: 2049|回复: 0
打印 上一主题 下一主题

[解析几何] 空间曲面和空间曲线的方程

[复制链接]
跳转到指定楼层
楼主
发表于 2017-11-9 20:52:09 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
  设空间中有曲面$S$。如果曲面$S$上每一点的坐标都满足方程
$$F(x,y,z)=0,$$
  反之,任何满足上式的数组$(x,y,z)$一定是曲面$S$上的某个点的坐标,那么方程就称为曲面$S$的一般方程,曲面$S$称为方程对应的曲面。
  如果曲面$S$上点的坐标表示成两个参数$(u,v)$的函数,由它们给出的方程组
$$\left\{ \begin{array}{l}
x=f_1(u,v),\\
y=f_2(u,v),\\
z=f_3(u,v),
\end{array} \right.(u,v) \in D$$
  称为曲面$S$的参数方程。其中$D$是$uv$平面上的区域,对于每一对$(u,v) \in D$的值,由上式确定的点$(x,y,z)$在$S$上;而$S$上任一点的坐标都可由$(u,v) \in D$的某一对值通过上式表示。于是通过曲面的参数方程,曲面上的点(可能要除去个别点)便可由数对$(u,v) \in D$来确定。
  设空间中有一条曲线$\Gamma$,如果曲线$\Gamma$上每一个点的坐标都满足方程组
$$\left\{ \begin{array}{l}
F(x,y,z)=0,\\
G(x,y,z)=0.
\end{array} \right.$$
  反之,任何满足上式的数组$(x,y,z)$都是曲线$\Gamma$上某个点的坐标,那么称上式为曲线$\Gamma$的一般方程,曲线$\Gamma$称为方程组对应的曲线。空间曲线可视为两曲面的交线。
  如果曲线$\Gamma$上点的坐标是某个参数$t$的函数,由它们给出的方程组
$$\left\{ \begin{array}{l}
x=\phi_1(t),\\
y=\phi_2(t),\\
z=\phi_3(t),
\end{array} \right.t \in I$$
  称为曲线$\Gamma$的参数方程。其中$I$是区间,对于$t \in I$的每一个值,由上式确定的点$(x,y,z)$在$\Gamma$上,而$\Gamma$上任一点的坐标都可由$t \in I$的某个值通过上式表示。
分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 分享分享 分享淘帖 顶 踩
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

QQ|网站统计|手机版|小黑屋|数学之家    

GMT+8, 2025-1-16 01:52 , Processed in 1.127973 second(s), 20 queries .

Powered by Discuz! X3.1

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表