|
之前说错了,D(x) 貌似不能作为反例,因为无理数加无理数可能是有理数。
D(x)定义为:
x 为有理数时,D(x)=1
x 为无理数时,D(x)=0
把D(x)稍微改进一下就能构造出反例:比如如下的 F(x):
x =1 or -1时,F(x)=1
x=0 时, F(x)=2
x 不是整数时,F(x)=0
如此F(x)在区间 [-1,1] 之内必定满足 0.5(F(a)+F(b)) >= F(0.5(a+b))
但是不满足第二个定义,把(-1,1)和(1,1)连起来,但是F(x)函数图像并不全在直线下方,F(0)=2>1。
---------------------------------------------------------------------------------------------------------------------------
仔细思考后,改进后的F(x)仍然不行...郁闷,感觉牵扯到集合的问题了。
我再努力寻找定义域 D 的一个划分,得到集合 P 与集合 Q,使得:
任意的x∈P,y∈D,可以有(x+y)/2∈P,
任意的x∈Q,y∈Q,可以有(x+y)/2∈Q,
能找到这样的划分,就不难构造函数说明两个定义不等价了。
[ 本帖最后由 icesheep 于 2008-9-6 11:59 编辑 ] |
|